chatbot / app.py
mobinln's picture
Update app.py
bf5ce6e verified
raw
history blame
1.9 kB
import socket
import subprocess
import gradio as gr
from openai import OpenAI
subprocess.Popen("bash /home/user/app/start.sh", shell=True)
client = OpenAI(
base_url="http://0.0.0.0:8000/v1",
api_key="sk-local",
timeout=600
)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = []
if system_message:
messages = [{"role": "system", "content": system_message}]
for user, assistant in history:
if user:
messages.append({"role": "user", "content": user})
if assistant:
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
try:
stream = client.chat.completions.create(
model="Deepseek-R1-0528-Qwen3-8B",
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True,
)
print("messages", messages)
output = ""
for chunk in stream:
delta = chunk.choices[0].delta
print(delta)
try:
output += delta.reasoning_content
except:
output += delta.content or ""
yield output
except Exception as e:
print(f"[Error] {e}")
yield "⚠️ Llama.cpp server error"
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="", label="System message"),
gr.Slider(minimum=1, maximum=8000, value=4096, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()