from speechbrain.pretrained import EncoderClassifier class CustomEncoderWav2vec2Classifier(EncoderClassifier): def compute_forward(self, batch, stage): wavs, wav_lens = batch.sig feats = self.mods.compute_features(wavs) if self.mods.normalize: feats = self.mods.normalize(feats, wav_lens) x = self.mods.encoder(feats) outputs = self.mods.classifier(x) return outputs def classify_file(self, path): signal = self.load_audio(path) batch = self.make_batch(signal) probs = self.forward(batch) score, index = probs.max(1) label = self.hparams.label_encoder.decode(index) return probs, score.item(), index.item(), label