Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +18 -35
src/streamlit_app.py
CHANGED
@@ -1,35 +1,32 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
|
4 |
-
# Set app root dynamically
|
5 |
-
APP_ROOT = os.path.dirname(os.path.abspath(__file__))
|
6 |
-
MODEL_CACHE_DIR = os.path.join(APP_ROOT, "model_cache")
|
7 |
-
|
8 |
-
# Set SpeechBrain cache path
|
9 |
-
os.environ["SPEECHBRAIN_CACHE"] = MODEL_CACHE_DIR
|
10 |
-
|
11 |
-
import streamlit as st
|
12 |
-
import tempfile
|
13 |
-
import requests
|
14 |
-
import subprocess
|
15 |
-
import torchaudio
|
16 |
from speechbrain.pretrained.interfaces import foreign_class
|
17 |
|
|
|
|
|
|
|
|
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
@st.cache_resource
|
20 |
def load_model():
|
21 |
try:
|
22 |
return foreign_class(
|
23 |
source="Jzuluaga/accent-id-commonaccent_xlsr-en-english",
|
24 |
pymodule_file="custom_interface.py",
|
25 |
-
classname="CustomEncoderWav2vec2Classifier"
|
26 |
-
savedir=MODEL_CACHE_DIR
|
27 |
)
|
28 |
except Exception as e:
|
29 |
st.error(f"β Model failed to load: {e}")
|
30 |
raise
|
31 |
-
|
32 |
-
# Download video from
|
33 |
def download_video(url, temp_dir):
|
34 |
video_path = os.path.join(temp_dir, "video.mp4")
|
35 |
r = requests.get(url, stream=True)
|
@@ -38,11 +35,10 @@ def download_video(url, temp_dir):
|
|
38 |
f.write(chunk)
|
39 |
return video_path
|
40 |
|
41 |
-
|
42 |
-
|
43 |
def extract_audio(video_path, temp_dir):
|
44 |
audio_path = os.path.join(temp_dir, "audio.wav")
|
45 |
-
ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
|
46 |
|
47 |
command = [
|
48 |
ffmpeg_path,
|
@@ -57,27 +53,16 @@ def extract_audio(video_path, temp_dir):
|
|
57 |
raise RuntimeError(f"FFmpeg failed: {e}")
|
58 |
return audio_path
|
59 |
|
|
|
60 |
def classify_accent(audio_path, model):
|
61 |
out_prob, score, index, label = model.classify_file(audio_path)
|
62 |
return label, score * 100, out_prob
|
63 |
|
64 |
-
#
|
65 |
-
st.set_page_config(page_title="Accent Classifier", layout="centered")
|
66 |
-
st.title("English Accent Detection")
|
67 |
-
|
68 |
-
st.markdown("Paste a link or upload a video to analyze the speaker's English accent.")
|
69 |
-
|
70 |
-
video_url = st.text_input("Paste a direct link to a video (MP4 URL)")
|
71 |
-
st.markdown("**OR**")
|
72 |
-
uploaded_file = st.file_uploader("Upload a video file (MP4 format)", type=["mp4"])
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
if uploaded_file or video_url:
|
77 |
with st.spinner("Processing video..."):
|
78 |
try:
|
79 |
with tempfile.TemporaryDirectory() as temp_dir:
|
80 |
-
# Get video path from upload or URL
|
81 |
if uploaded_file:
|
82 |
video_path = os.path.join(temp_dir, uploaded_file.name)
|
83 |
with open(video_path, 'wb') as f:
|
@@ -89,11 +74,9 @@ if uploaded_file or video_url:
|
|
89 |
model = load_model()
|
90 |
label, confidence, probs = classify_accent(audio_path, model)
|
91 |
|
92 |
-
# Ensure proper formatting
|
93 |
label = label if isinstance(label, str) else label[0]
|
94 |
st.success(f"Detected Accent: **{label}**")
|
95 |
-
st.info(f"Confidence Score: **{confidence
|
96 |
|
97 |
-
|
98 |
except Exception as e:
|
99 |
st.error(f"β Error: {str(e)}")
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from speechbrain.pretrained.interfaces import foreign_class
|
5 |
|
6 |
+
# Streamlit config
|
7 |
+
st.set_page_config(page_title="Accent Classifier", layout="centered")
|
8 |
+
st.title("English Accent Detection")
|
9 |
+
st.markdown("Paste a link or upload a video to analyze the speaker's English accent.")
|
10 |
|
11 |
+
# UI Inputs
|
12 |
+
video_url = st.text_input("Paste a direct link to a video (MP4 URL)")
|
13 |
+
st.markdown("**OR**")
|
14 |
+
uploaded_file = st.file_uploader("Upload a video file (MP4 format)", type=["mp4"])
|
15 |
+
|
16 |
+
# Load model (SpeechBrain default cache location)
|
17 |
@st.cache_resource
|
18 |
def load_model():
|
19 |
try:
|
20 |
return foreign_class(
|
21 |
source="Jzuluaga/accent-id-commonaccent_xlsr-en-english",
|
22 |
pymodule_file="custom_interface.py",
|
23 |
+
classname="CustomEncoderWav2vec2Classifier"
|
|
|
24 |
)
|
25 |
except Exception as e:
|
26 |
st.error(f"β Model failed to load: {e}")
|
27 |
raise
|
28 |
+
|
29 |
+
# Download video from URL
|
30 |
def download_video(url, temp_dir):
|
31 |
video_path = os.path.join(temp_dir, "video.mp4")
|
32 |
r = requests.get(url, stream=True)
|
|
|
35 |
f.write(chunk)
|
36 |
return video_path
|
37 |
|
38 |
+
# Extract audio using bundled ffmpeg
|
|
|
39 |
def extract_audio(video_path, temp_dir):
|
40 |
audio_path = os.path.join(temp_dir, "audio.wav")
|
41 |
+
ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
|
42 |
|
43 |
command = [
|
44 |
ffmpeg_path,
|
|
|
53 |
raise RuntimeError(f"FFmpeg failed: {e}")
|
54 |
return audio_path
|
55 |
|
56 |
+
# Run classification
|
57 |
def classify_accent(audio_path, model):
|
58 |
out_prob, score, index, label = model.classify_file(audio_path)
|
59 |
return label, score * 100, out_prob
|
60 |
|
61 |
+
# Main logic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
if uploaded_file or video_url:
|
63 |
with st.spinner("Processing video..."):
|
64 |
try:
|
65 |
with tempfile.TemporaryDirectory() as temp_dir:
|
|
|
66 |
if uploaded_file:
|
67 |
video_path = os.path.join(temp_dir, uploaded_file.name)
|
68 |
with open(video_path, 'wb') as f:
|
|
|
74 |
model = load_model()
|
75 |
label, confidence, probs = classify_accent(audio_path, model)
|
76 |
|
|
|
77 |
label = label if isinstance(label, str) else label[0]
|
78 |
st.success(f"Detected Accent: **{label}**")
|
79 |
+
st.info(f"Confidence Score: **{confidence:.1f}%**")
|
80 |
|
|
|
81 |
except Exception as e:
|
82 |
st.error(f"β Error: {str(e)}")
|