File size: 3,658 Bytes
1ca3221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
"""
Sampling script for the nano-coder model.
This script loads a trained nano-coder model and generates Python code completions.
"""

import os
import pickle
import torch
import torch.nn.functional as F
from model import GPTConfig, GPT

# Configuration
out_dir = 'out-nano-coder'
start = "def fibonacci(n):\n    "  # or start with any Python code
num_samples = 5  # number of samples to generate
max_new_tokens = 500  # number of tokens generated in each sample
temperature = 0.8  # 1.0 = no change, lower values make output more focused
top_k = 200  # retain only the top_k most likely tokens, clamp others to have 0 probability
seed = 1337
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16'

# Load the model
def load_model():
    """Load the trained nano-coder model."""
    # Load the checkpoint
    ckpt_path = os.path.join(out_dir, 'ckpt.pt')
    if not os.path.exists(ckpt_path):
        raise FileNotFoundError(f"Checkpoint not found at {ckpt_path}. Please train the model first.")
    
    checkpoint = torch.load(ckpt_path, map_location=device)
    gptconf = GPTConfig(**checkpoint['model_args'])
    model = GPT(gptconf)
    state_dict = checkpoint['model']
    unwanted_prefix = '_orig_mod.'
    for k,v in list(state_dict.items()):
        if k.startswith(unwanted_prefix):
            state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
    model.load_state_dict(state_dict)
    model.eval()
    model.to(device)
    
    return model, checkpoint

def load_vocab():
    """Load the vocabulary from the dataset."""
    data_dir = os.path.join('data', 'python-codes-25k')
    meta_path = os.path.join(data_dir, 'meta.pkl')
    
    if not os.path.exists(meta_path):
        raise FileNotFoundError(f"Vocabulary not found at {meta_path}. Please run prepare_code_dataset.py first.")
    
    with open(meta_path, 'rb') as f:
        meta = pickle.load(f)
    
    return meta['stoi'], meta['itos']

def encode(text, stoi):
    """Encode text to token ids."""
    return [stoi[c] for c in text]

def decode(ids, itos):
    """Decode token ids to text."""
    return ''.join([itos[i] for i in ids])

def generate_code(model, stoi, itos, start_text, max_new_tokens, temperature, top_k):
    """Generate code completion."""
    # Encode the start text
    start_ids = encode(start_text, stoi)
    x = torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...]
    
    # Generate tokens
    with torch.no_grad():
        with torch.amp.autocast(device_type='cuda' if device == 'cuda' else 'cpu', dtype=torch.bfloat16 if dtype == 'bfloat16' else torch.float16):
            y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
            completion = decode(y[0].tolist(), itos)
    
    return completion

def main():
    print("Loading nano-coder model...")
    model, checkpoint = load_model()
    stoi, itos = load_vocab()
    
    print(f"Model loaded successfully!")
    print(f"Vocabulary size: {len(stoi)}")
    print(f"Model parameters: {model.get_num_params()/1e6:.2f}M")
    print(f"Context length: {model.config.block_size}")
    print(f"Generating {num_samples} samples...")
    print(f"Start text: {repr(start)}")
    print("-" * 80)
    
    # Set random seed for reproducibility
    torch.manual_seed(seed)
    
    # Generate samples
    for i in range(num_samples):
        print(f"\n--- Sample {i+1} ---")
        completion = generate_code(model, stoi, itos, start, max_new_tokens, temperature, top_k)
        print(completion)
        print("-" * 80)

if __name__ == '__main__':
    main()