File size: 13,649 Bytes
cc8cb1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
695e015
 
 
 
 
 
 
 
 
 
 
 
 
 
cc8cb1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
"""
Free H200 Training Script for Nano-Coder
Optimized for HF's free 4-minute daily H200 access
"""

import os
import time
import math
import pickle
from contextlib import nullcontext

import numpy as np
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group

from model import GPTConfig, GPT

# Hugging Face specific imports
from huggingface_hub import HfApi, login
import wandb

# -----------------------------------------------------------------------------
# Configuration optimized for FREE H200 (4 minutes daily)
# I/O
out_dir = 'out-nano-coder-free'
eval_interval = 50  # Very frequent evaluation for short runs
log_interval = 2
eval_iters = 10  # Fewer eval iterations
eval_only = False
always_save_checkpoint = True
init_from = 'scratch'

# wandb logging - enabled for HF
wandb_log = True
wandb_project = 'nano-coder-free'
wandb_run_name = 'nano-coder-h200-free'

# data
dataset = 'python-codes-25k'
gradient_accumulation_steps = 1 * 8  # Minimal for H200
batch_size = 64  # Larger batch size for H200 efficiency
block_size = 512  # Smaller context for faster training

# model - smaller for free tier
n_layer = 6  # Reduced from 12
n_head = 6   # Reduced from 12
n_embd = 384 # Reduced from 768
dropout = 0.1
bias = False

# optimizer - optimized for H200
learning_rate = 1e-3  # Higher learning rate for faster convergence
max_iters = 1000  # Limited iterations for 4-minute runs
weight_decay = 1e-1
beta1 = 0.9
beta2 = 0.95
grad_clip = 1.0

# learning rate decay - faster for short runs
decay_lr = True
warmup_iters = 100  # Shorter warmup
lr_decay_iters = 1000
min_lr = 1e-4

# DDP settings
backend = 'nccl'

# system
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16'
compile = True

# HF specific
hf_repo_id = "mlopez6132/nano-coder-free"  # Free tier repo
push_to_hub = True

# Time tracking for 4-minute limit
start_time = time.time()
MAX_TRAINING_TIME = 3.5 * 60  # 3.5 minutes to be safe

# -----------------------------------------------------------------------------
config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
exec(open('configurator.py').read())
config = {k: globals()[k] for k in config_keys}

# -----------------------------------------------------------------------------

# HF setup
if push_to_hub:
    # Check if HF_TOKEN environment variable is set
    if os.environ.get('HF_TOKEN'):
        login(token=os.environ.get('HF_TOKEN'))
    else:
        # Try to login without token (will use cached credentials)
        try:
            login()
        except Exception as e:
            print(f"Warning: Could not login to HF Hub: {e}")
            print("Continuing without HF Hub upload...")
            push_to_hub = False
    
    if push_to_hub:
        api = HfApi()

# various inits, derived attributes, I/O setup
ddp = int(os.environ.get('RANK', -1)) != -1
if ddp:
    init_process_group(backend=backend)
    ddp_rank = int(os.environ['RANK'])
    ddp_local_rank = int(os.environ['LOCAL_RANK'])
    ddp_world_size = int(os.environ['WORLD_SIZE'])
    device = f'cuda:{ddp_local_rank}'
    torch.cuda.set_device(device)
    master_process = ddp_rank == 0
    seed_offset = ddp_rank
    assert gradient_accumulation_steps % ddp_world_size == 0
    gradient_accumulation_steps //= ddp_world_size
else:
    master_process = True
    seed_offset = 0
    ddp_world_size = 1

tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * block_size
print(f"tokens per iteration will be: {tokens_per_iter:,}")
print(f"FREE H200 TRAINING - MAX TIME: {MAX_TRAINING_TIME/60:.1f} minutes")

if master_process:
    os.makedirs(out_dir, exist_ok=True)

torch.manual_seed(1337 + seed_offset)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
device_type = 'cuda' if 'cuda' in device else 'cpu'
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)

# data loader
data_dir = os.path.join('data', dataset)
def get_batch(split):
    if split == 'train':
        data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r')
    else:
        data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r')
    ix = torch.randint(len(data) - block_size, (batch_size,))
    x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
    y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix])
    if device_type == 'cuda':
        x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
    else:
        x, y = x.to(device), y.to(device)
    return x, y

# init these up here, can override if init_from='resume'
iter_num = 0
best_val_loss = 1e9

# attempt to derive vocab_size from the dataset
meta_path = os.path.join(data_dir, 'meta.pkl')
meta_vocab_size = None
if os.path.exists(meta_path):
    with open(meta_path, 'rb') as f:
        meta = pickle.load(f)
    meta_vocab_size = meta['vocab_size']
    print(f"found vocab_size = {meta_vocab_size} (inside {meta_path})")

# model init
model_args = dict(n_layer=n_layer, n_head=n_head, n_embd=n_embd, block_size=block_size,
                  bias=bias, vocab_size=None, dropout=dropout)

if init_from == 'scratch':
    print("Initializing a new nano-coder model from scratch (FREE TIER)")
    if meta_vocab_size is None:
        print("defaulting to vocab_size of GPT-2 to 50304")
    model_args['vocab_size'] = meta_vocab_size if meta_vocab_size is not None else 50304
    gptconf = GPTConfig(**model_args)
    model = GPT(gptconf)
elif init_from == 'resume':
    print(f"Resuming training from {out_dir}")
    ckpt_path = os.path.join(out_dir, 'ckpt.pt')
    checkpoint = torch.load(ckpt_path, map_location=device)
    checkpoint_model_args = checkpoint['model_args']
    for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
        model_args[k] = checkpoint_model_args[k]
    gptconf = GPTConfig(**model_args)
    model = GPT(gptconf)
    state_dict = checkpoint['model']
    unwanted_prefix = '_orig_mod.'
    for k,v in list(state_dict.items()):
        if k.startswith(unwanted_prefix):
            state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
    model.load_state_dict(state_dict)
    iter_num = checkpoint['iter_num']
    best_val_loss = checkpoint['best_val_loss']
elif init_from.startswith('gpt2'):
    print(f"Initializing from OpenAI GPT-2 weights: {init_from}")
    override_args = dict(dropout=dropout)
    model = GPT.from_pretrained(init_from, override_args)
    for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
        model_args[k] = getattr(model.config, k)

if block_size < model.config.block_size:
    model.crop_block_size(block_size)
    model_args['block_size'] = block_size

model.to(device)

# initialize a GradScaler
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))

# optimizer
optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), device_type)
if init_from == 'resume':
    optimizer.load_state_dict(checkpoint['optimizer'])
checkpoint = None

# compile the model
if compile:
    print("compiling the model... (takes a ~minute)")
    unoptimized_model = model
    model = torch.compile(model)

# wrap model into DDP container
if ddp:
    model = DDP(model, device_ids=[ddp_local_rank])

# helps estimate an arbitrarily accurate loss over either split using many batches
@torch.no_grad()
def estimate_loss():
    out = {}
    model.eval()
    for split in ['train', 'val']:
        losses = torch.zeros(eval_iters)
        for k in range(eval_iters):
            X, Y = get_batch(split)
            with ctx:
                logits, loss = model(X, Y)
            losses[k] = loss.item()
        out[split] = losses.mean()
    model.train()
    return out

# learning rate decay scheduler (cosine with warmup)
def get_lr(it):
    if it < warmup_iters:
        return learning_rate * (it + 1) / (warmup_iters + 1)
    if it > lr_decay_iters:
        return min_lr
    decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
    assert 0 <= decay_ratio <= 1
    coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
    return min_lr + coeff * (learning_rate - min_lr)

# logging
if wandb_log and master_process:
    wandb.init(project=wandb_project, name=wandb_run_name, config=config)

# HF checkpoint upload function
def upload_checkpoint_to_hf(checkpoint_path, iter_num):
    if push_to_hub and master_process:
        try:
            # Create a unique filename
            filename = f"checkpoint_iter_{iter_num}.pt"
            file_path = os.path.join(out_dir, filename)
            
            # Copy checkpoint with new name
            import shutil
            shutil.copy2(checkpoint_path, file_path)
            
            # Upload to HF
            api.upload_file(
                path_or_fileobj=file_path,
                path_in_repo=filename,
                repo_id=hf_repo_id,
                repo_type="model"
            )
            print(f"Uploaded checkpoint to HF: {filename}")
            
            # Clean up local copy
            os.remove(file_path)
        except Exception as e:
            print(f"Failed to upload checkpoint: {e}")

# training loop
print("Starting FREE H200 nano-coder training...")
X, Y = get_batch('train')
t0 = time.time()
local_iter_num = 0
raw_model = model.module if ddp else model
running_mfu = -1.0

while True:
    # Check time limit
    elapsed_time = time.time() - start_time
    if elapsed_time > MAX_TRAINING_TIME:
        print(f"\n⏰ TIME LIMIT REACHED! Training stopped after {elapsed_time/60:.1f} minutes")
        break
    
    # determine and set the learning rate for this iteration
    lr = get_lr(iter_num) if decay_lr else learning_rate
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

    # evaluate the loss on train/val sets and write checkpoints
    if iter_num % eval_interval == 0 and master_process:
        losses = estimate_loss()
        remaining_time = MAX_TRAINING_TIME - elapsed_time
        print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}, time left: {remaining_time/60:.1f}min")
        if wandb_log:
            wandb.log({
                "iter": iter_num,
                "train/loss": losses['train'],
                "val/loss": losses['val'],
                "lr": lr,
                "mfu": running_mfu*100,
                "elapsed_time": elapsed_time,
                "remaining_time": remaining_time,
            })
        if losses['val'] < best_val_loss or always_save_checkpoint:
            best_val_loss = losses['val']
            if iter_num > 0:
                checkpoint = {
                    'model': raw_model.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'model_args': model_args,
                    'iter_num': iter_num,
                    'best_val_loss': best_val_loss,
                    'config': config,
                }
                checkpoint_path = os.path.join(out_dir, 'ckpt.pt')
                print(f"saving checkpoint to {out_dir}")
                torch.save(checkpoint, checkpoint_path)
                
                # Upload to HF every 200 iterations (frequent for short runs)
                if iter_num % 200 == 0:
                    upload_checkpoint_to_hf(checkpoint_path, iter_num)
    if iter_num == 0 and eval_only:
        break

    # forward backward update
    for micro_step in range(gradient_accumulation_steps):
        if ddp:
            model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1)
        with ctx:
            logits, loss = model(X, Y)
            loss = loss / gradient_accumulation_steps
        X, Y = get_batch('train')
        scaler.scale(loss).backward()
    
    # clip the gradient
    if grad_clip != 0.0:
        scaler.unscale_(optimizer)
        torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
    
    # step the optimizer and scaler
    scaler.step(optimizer)
    scaler.update()
    optimizer.zero_grad(set_to_none=True)

    # timing and logging
    t1 = time.time()
    dt = t1 - t0
    t0 = t1
    if iter_num % log_interval == 0 and master_process:
        lossf = loss.item() * gradient_accumulation_steps
        if local_iter_num >= 5:
            mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt)
            running_mfu = mfu if running_mfu == -1.0 else 0.9*running_mfu + 0.1*mfu
        remaining_time = MAX_TRAINING_TIME - elapsed_time
        print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, mfu {running_mfu*100:.2f}%, remaining: {remaining_time/60:.1f}min")
    iter_num += 1
    local_iter_num += 1

    # termination conditions
    if iter_num > max_iters:
        break

if ddp:
    destroy_process_group()

# Final upload
if push_to_hub and master_process:
    upload_checkpoint_to_hf(os.path.join(out_dir, 'ckpt.pt'), 'final')

total_time = time.time() - start_time
print(f"\n🎉 FREE H200 TRAINING COMPLETED!")
print(f"Total training time: {total_time/60:.1f} minutes")
print(f"Total iterations: {iter_num}")
print(f"Final validation loss: {best_val_loss:.4f}")
print(f"Model saved to: {out_dir}")