Spaces:
Running
Running
File size: 13,247 Bytes
cc8cb1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
"""
Free H200 Training Script for Nano-Coder
Optimized for HF's free 4-minute daily H200 access
"""
import os
import time
import math
import pickle
from contextlib import nullcontext
import numpy as np
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group
from model import GPTConfig, GPT
# Hugging Face specific imports
from huggingface_hub import HfApi, login
import wandb
# -----------------------------------------------------------------------------
# Configuration optimized for FREE H200 (4 minutes daily)
# I/O
out_dir = 'out-nano-coder-free'
eval_interval = 50 # Very frequent evaluation for short runs
log_interval = 2
eval_iters = 10 # Fewer eval iterations
eval_only = False
always_save_checkpoint = True
init_from = 'scratch'
# wandb logging - enabled for HF
wandb_log = True
wandb_project = 'nano-coder-free'
wandb_run_name = 'nano-coder-h200-free'
# data
dataset = 'python-codes-25k'
gradient_accumulation_steps = 1 * 8 # Minimal for H200
batch_size = 64 # Larger batch size for H200 efficiency
block_size = 512 # Smaller context for faster training
# model - smaller for free tier
n_layer = 6 # Reduced from 12
n_head = 6 # Reduced from 12
n_embd = 384 # Reduced from 768
dropout = 0.1
bias = False
# optimizer - optimized for H200
learning_rate = 1e-3 # Higher learning rate for faster convergence
max_iters = 1000 # Limited iterations for 4-minute runs
weight_decay = 1e-1
beta1 = 0.9
beta2 = 0.95
grad_clip = 1.0
# learning rate decay - faster for short runs
decay_lr = True
warmup_iters = 100 # Shorter warmup
lr_decay_iters = 1000
min_lr = 1e-4
# DDP settings
backend = 'nccl'
# system
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16'
compile = True
# HF specific
hf_repo_id = "mlopez6132/nano-coder-free" # Free tier repo
push_to_hub = True
# Time tracking for 4-minute limit
start_time = time.time()
MAX_TRAINING_TIME = 3.5 * 60 # 3.5 minutes to be safe
# -----------------------------------------------------------------------------
config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
exec(open('configurator.py').read())
config = {k: globals()[k] for k in config_keys}
# -----------------------------------------------------------------------------
# HF setup
if push_to_hub:
login() # Will use HF_TOKEN environment variable
api = HfApi()
# various inits, derived attributes, I/O setup
ddp = int(os.environ.get('RANK', -1)) != -1
if ddp:
init_process_group(backend=backend)
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
master_process = ddp_rank == 0
seed_offset = ddp_rank
assert gradient_accumulation_steps % ddp_world_size == 0
gradient_accumulation_steps //= ddp_world_size
else:
master_process = True
seed_offset = 0
ddp_world_size = 1
tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * block_size
print(f"tokens per iteration will be: {tokens_per_iter:,}")
print(f"FREE H200 TRAINING - MAX TIME: {MAX_TRAINING_TIME/60:.1f} minutes")
if master_process:
os.makedirs(out_dir, exist_ok=True)
torch.manual_seed(1337 + seed_offset)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
device_type = 'cuda' if 'cuda' in device else 'cpu'
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
# data loader
data_dir = os.path.join('data', dataset)
def get_batch(split):
if split == 'train':
data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r')
else:
data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r')
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix])
if device_type == 'cuda':
x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
else:
x, y = x.to(device), y.to(device)
return x, y
# init these up here, can override if init_from='resume'
iter_num = 0
best_val_loss = 1e9
# attempt to derive vocab_size from the dataset
meta_path = os.path.join(data_dir, 'meta.pkl')
meta_vocab_size = None
if os.path.exists(meta_path):
with open(meta_path, 'rb') as f:
meta = pickle.load(f)
meta_vocab_size = meta['vocab_size']
print(f"found vocab_size = {meta_vocab_size} (inside {meta_path})")
# model init
model_args = dict(n_layer=n_layer, n_head=n_head, n_embd=n_embd, block_size=block_size,
bias=bias, vocab_size=None, dropout=dropout)
if init_from == 'scratch':
print("Initializing a new nano-coder model from scratch (FREE TIER)")
if meta_vocab_size is None:
print("defaulting to vocab_size of GPT-2 to 50304")
model_args['vocab_size'] = meta_vocab_size if meta_vocab_size is not None else 50304
gptconf = GPTConfig(**model_args)
model = GPT(gptconf)
elif init_from == 'resume':
print(f"Resuming training from {out_dir}")
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
checkpoint = torch.load(ckpt_path, map_location=device)
checkpoint_model_args = checkpoint['model_args']
for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
model_args[k] = checkpoint_model_args[k]
gptconf = GPTConfig(**model_args)
model = GPT(gptconf)
state_dict = checkpoint['model']
unwanted_prefix = '_orig_mod.'
for k,v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
model.load_state_dict(state_dict)
iter_num = checkpoint['iter_num']
best_val_loss = checkpoint['best_val_loss']
elif init_from.startswith('gpt2'):
print(f"Initializing from OpenAI GPT-2 weights: {init_from}")
override_args = dict(dropout=dropout)
model = GPT.from_pretrained(init_from, override_args)
for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
model_args[k] = getattr(model.config, k)
if block_size < model.config.block_size:
model.crop_block_size(block_size)
model_args['block_size'] = block_size
model.to(device)
# initialize a GradScaler
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))
# optimizer
optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), device_type)
if init_from == 'resume':
optimizer.load_state_dict(checkpoint['optimizer'])
checkpoint = None
# compile the model
if compile:
print("compiling the model... (takes a ~minute)")
unoptimized_model = model
model = torch.compile(model)
# wrap model into DDP container
if ddp:
model = DDP(model, device_ids=[ddp_local_rank])
# helps estimate an arbitrarily accurate loss over either split using many batches
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
with ctx:
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
# learning rate decay scheduler (cosine with warmup)
def get_lr(it):
if it < warmup_iters:
return learning_rate * (it + 1) / (warmup_iters + 1)
if it > lr_decay_iters:
return min_lr
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return min_lr + coeff * (learning_rate - min_lr)
# logging
if wandb_log and master_process:
wandb.init(project=wandb_project, name=wandb_run_name, config=config)
# HF checkpoint upload function
def upload_checkpoint_to_hf(checkpoint_path, iter_num):
if push_to_hub and master_process:
try:
# Create a unique filename
filename = f"checkpoint_iter_{iter_num}.pt"
file_path = os.path.join(out_dir, filename)
# Copy checkpoint with new name
import shutil
shutil.copy2(checkpoint_path, file_path)
# Upload to HF
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=filename,
repo_id=hf_repo_id,
repo_type="model"
)
print(f"Uploaded checkpoint to HF: {filename}")
# Clean up local copy
os.remove(file_path)
except Exception as e:
print(f"Failed to upload checkpoint: {e}")
# training loop
print("Starting FREE H200 nano-coder training...")
X, Y = get_batch('train')
t0 = time.time()
local_iter_num = 0
raw_model = model.module if ddp else model
running_mfu = -1.0
while True:
# Check time limit
elapsed_time = time.time() - start_time
if elapsed_time > MAX_TRAINING_TIME:
print(f"\n⏰ TIME LIMIT REACHED! Training stopped after {elapsed_time/60:.1f} minutes")
break
# determine and set the learning rate for this iteration
lr = get_lr(iter_num) if decay_lr else learning_rate
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# evaluate the loss on train/val sets and write checkpoints
if iter_num % eval_interval == 0 and master_process:
losses = estimate_loss()
remaining_time = MAX_TRAINING_TIME - elapsed_time
print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}, time left: {remaining_time/60:.1f}min")
if wandb_log:
wandb.log({
"iter": iter_num,
"train/loss": losses['train'],
"val/loss": losses['val'],
"lr": lr,
"mfu": running_mfu*100,
"elapsed_time": elapsed_time,
"remaining_time": remaining_time,
})
if losses['val'] < best_val_loss or always_save_checkpoint:
best_val_loss = losses['val']
if iter_num > 0:
checkpoint = {
'model': raw_model.state_dict(),
'optimizer': optimizer.state_dict(),
'model_args': model_args,
'iter_num': iter_num,
'best_val_loss': best_val_loss,
'config': config,
}
checkpoint_path = os.path.join(out_dir, 'ckpt.pt')
print(f"saving checkpoint to {out_dir}")
torch.save(checkpoint, checkpoint_path)
# Upload to HF every 200 iterations (frequent for short runs)
if iter_num % 200 == 0:
upload_checkpoint_to_hf(checkpoint_path, iter_num)
if iter_num == 0 and eval_only:
break
# forward backward update
for micro_step in range(gradient_accumulation_steps):
if ddp:
model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1)
with ctx:
logits, loss = model(X, Y)
loss = loss / gradient_accumulation_steps
X, Y = get_batch('train')
scaler.scale(loss).backward()
# clip the gradient
if grad_clip != 0.0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
# step the optimizer and scaler
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
# timing and logging
t1 = time.time()
dt = t1 - t0
t0 = t1
if iter_num % log_interval == 0 and master_process:
lossf = loss.item() * gradient_accumulation_steps
if local_iter_num >= 5:
mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt)
running_mfu = mfu if running_mfu == -1.0 else 0.9*running_mfu + 0.1*mfu
remaining_time = MAX_TRAINING_TIME - elapsed_time
print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, mfu {running_mfu*100:.2f}%, remaining: {remaining_time/60:.1f}min")
iter_num += 1
local_iter_num += 1
# termination conditions
if iter_num > max_iters:
break
if ddp:
destroy_process_group()
# Final upload
if push_to_hub and master_process:
upload_checkpoint_to_hf(os.path.join(out_dir, 'ckpt.pt'), 'final')
total_time = time.time() - start_time
print(f"\n🎉 FREE H200 TRAINING COMPLETED!")
print(f"Total training time: {total_time/60:.1f} minutes")
print(f"Total iterations: {iter_num}")
print(f"Final validation loss: {best_val_loss:.4f}")
print(f"Model saved to: {out_dir}") |