|
import json |
|
import os |
|
from typing import * |
|
import numpy as np |
|
import torch |
|
import utils3d.torch |
|
from .components import StandardDatasetBase, TextConditionedMixin, ImageConditionedMixin |
|
from ..modules.sparse.basic import SparseTensor |
|
from .. import models |
|
from ..utils.render_utils import get_renderer |
|
from ..utils.data_utils import load_balanced_group_indices |
|
|
|
|
|
class SLatVisMixin: |
|
def __init__( |
|
self, |
|
*args, |
|
pretrained_slat_dec: str = 'microsoft/TRELLIS-image-large/ckpts/slat_dec_gs_swin8_B_64l8gs32_fp16', |
|
slat_dec_path: Optional[str] = None, |
|
slat_dec_ckpt: Optional[str] = None, |
|
**kwargs |
|
): |
|
super().__init__(*args, **kwargs) |
|
self.slat_dec = None |
|
self.pretrained_slat_dec = pretrained_slat_dec |
|
self.slat_dec_path = slat_dec_path |
|
self.slat_dec_ckpt = slat_dec_ckpt |
|
|
|
def _loading_slat_dec(self): |
|
if self.slat_dec is not None: |
|
return |
|
if self.slat_dec_path is not None: |
|
cfg = json.load(open(os.path.join(self.slat_dec_path, 'config.json'), 'r')) |
|
decoder = getattr(models, cfg['models']['decoder']['name'])(**cfg['models']['decoder']['args']) |
|
ckpt_path = os.path.join(self.slat_dec_path, 'ckpts', f'decoder_{self.slat_dec_ckpt}.pt') |
|
decoder.load_state_dict(torch.load(ckpt_path, map_location='cpu', weights_only=True)) |
|
else: |
|
decoder = models.from_pretrained(self.pretrained_slat_dec) |
|
self.slat_dec = decoder.cuda().eval() |
|
|
|
def _delete_slat_dec(self): |
|
del self.slat_dec |
|
self.slat_dec = None |
|
|
|
@torch.no_grad() |
|
def decode_latent(self, z, batch_size=4): |
|
self._loading_slat_dec() |
|
reps = [] |
|
if self.normalization is not None: |
|
z = z * self.std.to(z.device) + self.mean.to(z.device) |
|
for i in range(0, z.shape[0], batch_size): |
|
reps.append(self.slat_dec(z[i:i+batch_size])) |
|
reps = sum(reps, []) |
|
self._delete_slat_dec() |
|
return reps |
|
|
|
@torch.no_grad() |
|
def visualize_sample(self, x_0: Union[SparseTensor, dict]): |
|
x_0 = x_0 if isinstance(x_0, SparseTensor) else x_0['x_0'] |
|
reps = self.decode_latent(x_0.cuda()) |
|
|
|
|
|
yaws = [0, np.pi / 2, np.pi, 3 * np.pi / 2] |
|
yaws_offset = np.random.uniform(-np.pi / 4, np.pi / 4) |
|
yaws = [y + yaws_offset for y in yaws] |
|
pitch = [np.random.uniform(-np.pi / 4, np.pi / 4) for _ in range(4)] |
|
|
|
exts = [] |
|
ints = [] |
|
for yaw, pitch in zip(yaws, pitch): |
|
orig = torch.tensor([ |
|
np.sin(yaw) * np.cos(pitch), |
|
np.cos(yaw) * np.cos(pitch), |
|
np.sin(pitch), |
|
]).float().cuda() * 2 |
|
fov = torch.deg2rad(torch.tensor(40)).cuda() |
|
extrinsics = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda()) |
|
intrinsics = utils3d.torch.intrinsics_from_fov_xy(fov, fov) |
|
exts.append(extrinsics) |
|
ints.append(intrinsics) |
|
|
|
renderer = get_renderer(reps[0]) |
|
images = [] |
|
for representation in reps: |
|
image = torch.zeros(3, 1024, 1024).cuda() |
|
tile = [2, 2] |
|
for j, (ext, intr) in enumerate(zip(exts, ints)): |
|
res = renderer.render(representation, ext, intr) |
|
image[:, 512 * (j // tile[1]):512 * (j // tile[1] + 1), 512 * (j % tile[1]):512 * (j % tile[1] + 1)] = res['color'] |
|
images.append(image) |
|
images = torch.stack(images) |
|
|
|
return images |
|
|
|
|
|
class SLat(SLatVisMixin, StandardDatasetBase): |
|
""" |
|
structured latent dataset |
|
|
|
Args: |
|
roots (str): path to the dataset |
|
latent_model (str): name of the latent model |
|
min_aesthetic_score (float): minimum aesthetic score |
|
max_num_voxels (int): maximum number of voxels |
|
normalization (dict): normalization stats |
|
pretrained_slat_dec (str): name of the pretrained slat decoder |
|
slat_dec_path (str): path to the slat decoder, if given, will override the pretrained_slat_dec |
|
slat_dec_ckpt (str): name of the slat decoder checkpoint |
|
""" |
|
def __init__(self, |
|
roots: str, |
|
*, |
|
latent_model: str, |
|
min_aesthetic_score: float = 5.0, |
|
max_num_voxels: int = 32768, |
|
normalization: Optional[dict] = None, |
|
pretrained_slat_dec: str = 'microsoft/TRELLIS-image-large/ckpts/slat_dec_gs_swin8_B_64l8gs32_fp16', |
|
slat_dec_path: Optional[str] = None, |
|
slat_dec_ckpt: Optional[str] = None, |
|
): |
|
self.normalization = normalization |
|
self.latent_model = latent_model |
|
self.min_aesthetic_score = min_aesthetic_score |
|
self.max_num_voxels = max_num_voxels |
|
self.value_range = (0, 1) |
|
|
|
super().__init__( |
|
roots, |
|
pretrained_slat_dec=pretrained_slat_dec, |
|
slat_dec_path=slat_dec_path, |
|
slat_dec_ckpt=slat_dec_ckpt, |
|
) |
|
|
|
self.loads = [self.metadata.loc[sha256, 'num_voxels'] for _, sha256 in self.instances] |
|
|
|
if self.normalization is not None: |
|
self.mean = torch.tensor(self.normalization['mean']).reshape(1, -1) |
|
self.std = torch.tensor(self.normalization['std']).reshape(1, -1) |
|
|
|
def filter_metadata(self, metadata): |
|
stats = {} |
|
metadata = metadata[metadata[f'latent_{self.latent_model}']] |
|
stats['With latent'] = len(metadata) |
|
metadata = metadata[metadata['aesthetic_score'] >= self.min_aesthetic_score] |
|
stats[f'Aesthetic score >= {self.min_aesthetic_score}'] = len(metadata) |
|
metadata = metadata[metadata['num_voxels'] <= self.max_num_voxels] |
|
stats[f'Num voxels <= {self.max_num_voxels}'] = len(metadata) |
|
return metadata, stats |
|
|
|
def get_instance(self, root, instance): |
|
data = np.load(os.path.join(root, 'latents', self.latent_model, f'{instance}.npz')) |
|
coords = torch.tensor(data['coords']).int() |
|
feats = torch.tensor(data['feats']).float() |
|
if self.normalization is not None: |
|
feats = (feats - self.mean) / self.std |
|
return { |
|
'coords': coords, |
|
'feats': feats, |
|
} |
|
|
|
@staticmethod |
|
def collate_fn(batch, split_size=None): |
|
if split_size is None: |
|
group_idx = [list(range(len(batch)))] |
|
else: |
|
group_idx = load_balanced_group_indices([b['coords'].shape[0] for b in batch], split_size) |
|
packs = [] |
|
for group in group_idx: |
|
sub_batch = [batch[i] for i in group] |
|
pack = {} |
|
coords = [] |
|
feats = [] |
|
layout = [] |
|
start = 0 |
|
for i, b in enumerate(sub_batch): |
|
coords.append(torch.cat([torch.full((b['coords'].shape[0], 1), i, dtype=torch.int32), b['coords']], dim=-1)) |
|
feats.append(b['feats']) |
|
layout.append(slice(start, start + b['coords'].shape[0])) |
|
start += b['coords'].shape[0] |
|
coords = torch.cat(coords) |
|
feats = torch.cat(feats) |
|
pack['x_0'] = SparseTensor( |
|
coords=coords, |
|
feats=feats, |
|
) |
|
pack['x_0']._shape = torch.Size([len(group), *sub_batch[0]['feats'].shape[1:]]) |
|
pack['x_0'].register_spatial_cache('layout', layout) |
|
|
|
|
|
keys = [k for k in sub_batch[0].keys() if k not in ['coords', 'feats']] |
|
for k in keys: |
|
if isinstance(sub_batch[0][k], torch.Tensor): |
|
pack[k] = torch.stack([b[k] for b in sub_batch]) |
|
elif isinstance(sub_batch[0][k], list): |
|
pack[k] = sum([b[k] for b in sub_batch], []) |
|
else: |
|
pack[k] = [b[k] for b in sub_batch] |
|
|
|
packs.append(pack) |
|
|
|
if split_size is None: |
|
return packs[0] |
|
return packs |
|
|
|
|
|
class TextConditionedSLat(TextConditionedMixin, SLat): |
|
""" |
|
Text conditioned structured latent dataset |
|
""" |
|
pass |
|
|
|
|
|
class ImageConditionedSLat(ImageConditionedMixin, SLat): |
|
""" |
|
Image conditioned structured latent dataset |
|
""" |
|
pass |
|
|