|
import os |
|
from PIL import Image |
|
import json |
|
import numpy as np |
|
import pandas as pd |
|
import torch |
|
import utils3d.torch |
|
from ..modules.sparse.basic import SparseTensor |
|
from .components import StandardDatasetBase |
|
|
|
|
|
class SparseFeat2Render(StandardDatasetBase): |
|
""" |
|
SparseFeat2Render dataset. |
|
|
|
Args: |
|
roots (str): paths to the dataset |
|
image_size (int): size of the image |
|
model (str): model name |
|
resolution (int): resolution of the data |
|
min_aesthetic_score (float): minimum aesthetic score |
|
max_num_voxels (int): maximum number of voxels |
|
""" |
|
def __init__( |
|
self, |
|
roots: str, |
|
image_size: int, |
|
model: str = 'dinov2_vitl14_reg', |
|
resolution: int = 64, |
|
min_aesthetic_score: float = 5.0, |
|
max_num_voxels: int = 32768, |
|
): |
|
self.image_size = image_size |
|
self.model = model |
|
self.resolution = resolution |
|
self.min_aesthetic_score = min_aesthetic_score |
|
self.max_num_voxels = max_num_voxels |
|
self.value_range = (0, 1) |
|
|
|
super().__init__(roots) |
|
|
|
def filter_metadata(self, metadata): |
|
stats = {} |
|
metadata = metadata[metadata[f'feature_{self.model}']] |
|
stats['With features'] = len(metadata) |
|
metadata = metadata[metadata['aesthetic_score'] >= self.min_aesthetic_score] |
|
stats[f'Aesthetic score >= {self.min_aesthetic_score}'] = len(metadata) |
|
metadata = metadata[metadata['num_voxels'] <= self.max_num_voxels] |
|
stats[f'Num voxels <= {self.max_num_voxels}'] = len(metadata) |
|
return metadata, stats |
|
|
|
def _get_image(self, root, instance): |
|
with open(os.path.join(root, 'renders', instance, 'transforms.json')) as f: |
|
metadata = json.load(f) |
|
n_views = len(metadata['frames']) |
|
view = np.random.randint(n_views) |
|
metadata = metadata['frames'][view] |
|
fov = metadata['camera_angle_x'] |
|
intrinsics = utils3d.torch.intrinsics_from_fov_xy(torch.tensor(fov), torch.tensor(fov)) |
|
c2w = torch.tensor(metadata['transform_matrix']) |
|
c2w[:3, 1:3] *= -1 |
|
extrinsics = torch.inverse(c2w) |
|
|
|
image_path = os.path.join(root, 'renders', instance, metadata['file_path']) |
|
image = Image.open(image_path) |
|
alpha = image.getchannel(3) |
|
image = image.convert('RGB') |
|
image = image.resize((self.image_size, self.image_size), Image.Resampling.LANCZOS) |
|
alpha = alpha.resize((self.image_size, self.image_size), Image.Resampling.LANCZOS) |
|
image = torch.tensor(np.array(image)).permute(2, 0, 1).float() / 255.0 |
|
alpha = torch.tensor(np.array(alpha)).float() / 255.0 |
|
|
|
return { |
|
'image': image, |
|
'alpha': alpha, |
|
'extrinsics': extrinsics, |
|
'intrinsics': intrinsics, |
|
} |
|
|
|
def _get_feat(self, root, instance): |
|
DATA_RESOLUTION = 64 |
|
feats_path = os.path.join(root, 'features', self.model, f'{instance}.npz') |
|
feats = np.load(feats_path, allow_pickle=True) |
|
coords = torch.tensor(feats['indices']).int() |
|
feats = torch.tensor(feats['patchtokens']).float() |
|
|
|
if self.resolution != DATA_RESOLUTION: |
|
factor = DATA_RESOLUTION // self.resolution |
|
coords = coords // factor |
|
coords, idx = coords.unique(return_inverse=True, dim=0) |
|
feats = torch.scatter_reduce( |
|
torch.zeros(coords.shape[0], feats.shape[1], device=feats.device), |
|
dim=0, |
|
index=idx.unsqueeze(-1).expand(-1, feats.shape[1]), |
|
src=feats, |
|
reduce='mean' |
|
) |
|
|
|
return { |
|
'coords': coords, |
|
'feats': feats, |
|
} |
|
|
|
@torch.no_grad() |
|
def visualize_sample(self, sample: dict): |
|
return sample['image'] |
|
|
|
@staticmethod |
|
def collate_fn(batch): |
|
pack = {} |
|
coords = [] |
|
for i, b in enumerate(batch): |
|
coords.append(torch.cat([torch.full((b['coords'].shape[0], 1), i, dtype=torch.int32), b['coords']], dim=-1)) |
|
coords = torch.cat(coords) |
|
feats = torch.cat([b['feats'] for b in batch]) |
|
pack['feats'] = SparseTensor( |
|
coords=coords, |
|
feats=feats, |
|
) |
|
|
|
pack['image'] = torch.stack([b['image'] for b in batch]) |
|
pack['alpha'] = torch.stack([b['alpha'] for b in batch]) |
|
pack['extrinsics'] = torch.stack([b['extrinsics'] for b in batch]) |
|
pack['intrinsics'] = torch.stack([b['intrinsics'] for b in batch]) |
|
|
|
return pack |
|
|
|
def get_instance(self, root, instance): |
|
image = self._get_image(root, instance) |
|
feat = self._get_feat(root, instance) |
|
return { |
|
**image, |
|
**feat, |
|
} |
|
|