File size: 1,518 Bytes
a152706 9fae8dd 978608b dfbe110 a152706 dc4f75a a152706 9fae8dd dfbe110 e3f6ffa dfbe110 9fae8dd dc4f75a dfbe110 dc4f75a 200e5f9 a152706 dc4f75a a152706 9fae8dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
import torch
import soundfile as sf
from speechbrain.inference.TTS import Tacotron2
from speechbrain.inference.vocoders import HIFIGAN
from speechbrain.utils.text_to_sequence import text_to_sequence
# モデルのロード
hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="tmpdir_vocoder")
tacotron2 = Tacotron2.from_hparams(source="speechbrain/tts-tacotron2-ljspeech", savedir="tmpdir_tts")
# 推論関数の定義
def synthesize_speech(text):
# テキストをトークンIDに変換
sequence = text_to_sequence(
text,
tacotron2.hparams.text_cleaners,
add_bos_eos=tacotron2.hparams.add_bos_eos,
symbol_set=tacotron2.hparams.symbol_set
)
# 系列をパディング
batch = tacotron2.mods.encoder.pad_sequence_pre([torch.tensor(sequence)])
# Tacotron2でmel spectrogramを生成
mel_output, mel_length, alignment = tacotron2.encode_batch(batch)
# HiFi-GANでmel spectrogramから音声を生成
waveforms = hifi_gan.decode_batch(mel_output)
# 音声を .wav 形式で保存
sf.write("speech.wav", waveforms.squeeze().cpu().numpy(), samplerate=hifi_gan.hparams.sample_rate)
return "speech.wav"
# Gradioインターフェースの作成
iface = gr.Interface(
fn=synthesize_speech,
inputs=gr.Textbox(lines=5, label="Input Text"),
outputs=gr.Audio(label="Output Audio", type="filepath"),
title="TTS Demo",
description="Enter text to synthesize speech."
)
iface.launch() |