Commit
·
cf62495
1
Parent(s):
0161c89
update
Browse files
main.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import numpy as np
|
5 |
+
from cryptography.fernet import Fernet
|
6 |
+
from collections import defaultdict
|
7 |
+
from sklearn.metrics import ndcg_score
|
8 |
+
|
9 |
+
def load_and_decrypt_qrel(secret_key):
|
10 |
+
try:
|
11 |
+
with open("data/answer.enc", "rb") as enc_file:
|
12 |
+
encrypted_data = enc_file.read()
|
13 |
+
cipher = Fernet(secret_key.encode())
|
14 |
+
decrypted_data = cipher.decrypt(encrypted_data).decode("utf-8")
|
15 |
+
raw_data = json.loads(decrypted_data)
|
16 |
+
|
17 |
+
# qrel_dict: dataset -> query_id -> {corpus_id: score}
|
18 |
+
qrel_dict = defaultdict(lambda: defaultdict(dict))
|
19 |
+
for dataset, records in raw_data.items():
|
20 |
+
for item in records:
|
21 |
+
qid, cid, score = item["query_id"], item["corpus_id"], item["score"]
|
22 |
+
qrel_dict[dataset][qid][cid] = score
|
23 |
+
return qrel_dict
|
24 |
+
except Exception as e:
|
25 |
+
raise ValueError(f"Failed to decrypt answer file: {str(e)}")
|
26 |
+
|
27 |
+
def recall_at_k(rank_list, relevant_ids, k=1):
|
28 |
+
return int(any(item in relevant_ids for item in rank_list[:k]))
|
29 |
+
|
30 |
+
def ndcg_at_k(rank_list, rel_dict, k):
|
31 |
+
all_items = list(dict.fromkeys(rank_list + list(rel_dict.keys())))
|
32 |
+
|
33 |
+
y_true = [rel_dict.get(item, 0) for item in all_items]
|
34 |
+
|
35 |
+
y_score = [len(all_items) - i for i in range(len(all_items))]
|
36 |
+
|
37 |
+
return ndcg_score([y_true], [y_score], k=k)
|
38 |
+
|
39 |
+
def evaluate(pred_data, qrel_dict):
|
40 |
+
results = {}
|
41 |
+
for dataset, queries in pred_data.items():
|
42 |
+
if dataset not in qrel_dict:
|
43 |
+
continue
|
44 |
+
|
45 |
+
recall_1, ndcg_10, ndcg_100 = [], [], []
|
46 |
+
|
47 |
+
for item in queries:
|
48 |
+
qid = item["query_id"]
|
49 |
+
rank_list = item["rank_list"].split(",")
|
50 |
+
rank_list = [x.strip() for x in rank_list if x.strip()]
|
51 |
+
rel_dict = qrel_dict[dataset].get(qid, {})
|
52 |
+
relevant_ids = [cid for cid, score in rel_dict.items() if score > 0]
|
53 |
+
|
54 |
+
recall_1.append(recall_at_k(rank_list, relevant_ids, 1))
|
55 |
+
ndcg_10.append(ndcg_at_k(rank_list, rel_dict, 10))
|
56 |
+
ndcg_100.append(ndcg_at_k(rank_list, rel_dict, 100))
|
57 |
+
|
58 |
+
results[dataset] = {
|
59 |
+
"Recall@1": round(np.mean(recall_1) * 100, 2),
|
60 |
+
"NDCG@10": round(np.mean(ndcg_10) * 100, 2),
|
61 |
+
"NDCG@100": round(np.mean(ndcg_100) * 100, 2),
|
62 |
+
}
|
63 |
+
|
64 |
+
return results
|
65 |
+
|
66 |
+
# ==== Gradio Wrapper ====
|
67 |
+
def process_json(file):
|
68 |
+
try:
|
69 |
+
pred_data = json.load(open(file))
|
70 |
+
except Exception as e:
|
71 |
+
return f"Invalid JSON format: {str(e)}"
|
72 |
+
|
73 |
+
try:
|
74 |
+
secret_key = os.getenv("SECRET_KEY")
|
75 |
+
qrel_dict = load_and_decrypt_qrel(secret_key)
|
76 |
+
except Exception as e:
|
77 |
+
return str(e)
|
78 |
+
|
79 |
+
try:
|
80 |
+
metrics = evaluate(pred_data, qrel_dict)
|
81 |
+
return json.dumps(metrics, indent=2)
|
82 |
+
except Exception as e:
|
83 |
+
return f"Error during evaluation: {str(e)}"
|
84 |
+
|
85 |
+
# ==== Launch Gradio App ====
|
86 |
+
def main_gradio():
|
87 |
+
example_json = '''{
|
88 |
+
"mscoco": [
|
89 |
+
{"query_id": "1", "rank_list": "5, 2, 8"},
|
90 |
+
{"query_id": "2", "rank_list": "9, 1, 3"}
|
91 |
+
],
|
92 |
+
"google_wit": [
|
93 |
+
{"query_id": "3", "rank_list": "11, 5, 22"}
|
94 |
+
]
|
95 |
+
}'''
|
96 |
+
gr.Interface(
|
97 |
+
fn=process_json,
|
98 |
+
inputs=gr.File(label="Upload Prediction JSON"),
|
99 |
+
outputs=gr.Textbox(label="Evaluation Metrics"),
|
100 |
+
title="Mixed-Modality Retrieval Evaluation",
|
101 |
+
description="Upload a prediction JSON to evaluate Recall@1, NDCG@10, and NDCG@100 against encrypted qrels.\n\nExample input:\n" + example_json
|
102 |
+
).launch(share=True)
|
103 |
+
|
104 |
+
if __name__ == "__main__":
|
105 |
+
main_gradio()
|