Spaces:
Sleeping
Sleeping
import requests | |
import streamlit as st | |
from dotenv import load_dotenv | |
import os | |
# .env 파일 로드 | |
load_dotenv() | |
# Hugging Face API 정보 | |
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct" | |
API_KEY = os.getenv("HUGGINGFACE_API_KEY") | |
print(os.getenv("HUGGINGFACE_API_KEY")) | |
# 모델 호출 함수 | |
def query_model(prompt): | |
headers = {"Authorization": f"Bearer {API_KEY}"} | |
data = {"inputs": prompt} | |
response = requests.post(API_URL, headers=headers, json=data) | |
print(response) | |
if response.status_code == 200: | |
result = response.json() | |
print("Response:", result) # API 응답 전체를 출력 | |
if isinstance(result, list) and len(result) > 0: | |
return result[0].get("generated_text", "No output generated") | |
else: | |
return "No valid output from API" | |
else: | |
print(f"Error: {response.status_code}, {response.text}") | |
return f"Error: {response.status_code}, {response.text}" | |
# Streamlit UI 구성 | |
st.title("Meta-Llama Text Generator") | |
st.write("Enter a prompt to generate text using the Meta-Llama-3B model.") | |
# 사용자 입력 | |
prompt = st.text_area("Enter your prompt:", height=200) | |
if st.button("Generate"): | |
if prompt.strip(): | |
st.write("Generating...") | |
output = query_model(prompt) | |
st.write("### Output:") | |
st.write(output) | |
else: | |
st.warning("Please enter a valid prompt!") | |