Spaces:
Sleeping
Sleeping
File size: 18,504 Bytes
6085a05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import streamlit as st
import pandas as pd
import os
from src.SecondModule.module2 import SimilarQuestionGenerator
import logging
from typing import Optional, Tuple
logging.basicConfig(level=logging.DEBUG)
# Streamlit ํ์ด์ง ๊ธฐ๋ณธ ์ค์
st.set_page_config(
page_title="MisconcepTutor",
layout="wide",
initial_sidebar_state="expanded"
)
# ๊ฒฝ๋ก ์ค์
base_path = os.path.dirname(os.path.abspath(__file__))
data_path = os.path.join(base_path, 'Data')
misconception_csv_path = os.path.join(data_path, 'misconception_mapping.csv')
# ๋ก๊น
์ค์
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ์ธ์
์ํ ์ด๊ธฐํ - ๊ฐ์ฅ ๋จผ์ ์คํ๋๋๋ก ์ต์๋จ์ ๋ฐฐ์น
if 'initialized' not in st.session_state:
st.session_state.initialized = True
st.session_state.wrong_questions = []
st.session_state.misconceptions = []
st.session_state.current_question_index = 0
st.session_state.generated_questions = []
st.session_state.current_step = 'initial'
st.session_state.selected_wrong_answer = None
st.session_state.questions = []
logger.info("Session state initialized")
# ๋ฌธ์ ์์ฑ๊ธฐ ์ด๊ธฐํ
@st.cache_resource
def load_question_generator():
"""๋ฌธ์ ์์ฑ ๋ชจ๋ธ ๋ก๋"""
if not os.path.exists(misconception_csv_path):
st.error(f"CSV ํ์ผ์ด ์กด์ฌํ์ง ์์ต๋๋ค: {misconception_csv_path}")
raise FileNotFoundError(f"CSV ํ์ผ์ด ์กด์ฌํ์ง ์์ต๋๋ค: {misconception_csv_path}")
return SimilarQuestionGenerator(misconception_csv_path=misconception_csv_path)
# CSV ๋ฐ์ดํฐ ๋ก๋ ํจ์
@st.cache_data
def load_data(data_file = '/train.csv'):
try:
file_path = os.path.join(data_path, data_file.lstrip('/'))
df = pd.read_csv(file_path)
logger.info(f"Data loaded successfully from {file_path}")
return df
except FileNotFoundError:
st.error(f"ํ์ผ์ ์ฐพ์ ์ ์์ต๋๋ค: {data_file}")
logger.error(f"File not found: {data_file}")
return None
def start_quiz():
"""ํด์ฆ ์์ ๋ฐ ์ด๊ธฐํ"""
df = load_data()
if df is None or df.empty:
st.error("๋ฐ์ดํฐ๋ฅผ ๋ถ๋ฌ์ฌ ์ ์์ต๋๋ค. ๋ฐ์ดํฐ์
์ ํ์ธํด์ฃผ์ธ์.")
return
st.session_state.questions = df.sample(n=10, random_state=42)
st.session_state.current_step = 'quiz'
st.session_state.current_question_index = 0
st.session_state.wrong_questions = []
st.session_state.misconceptions = []
st.session_state.generated_questions = []
logger.info("Quiz started")
# def generate_similar_question(wrong_q, misconception_id, generator):
# """์ ์ฌ ๋ฌธ์ ์์ฑ"""
# if not isinstance(wrong_q, dict):
# logger.error(f"Invalid wrong_q type: {type(wrong_q)}")
# st.error("์ ์ฌ ๋ฌธ์ ์์ฑ์ ํ์ํ ๋ฐ์ดํฐ ํ์์ด ์๋ชป๋์์ต๋๋ค.")
# return None
# try:
# generated_q, _ = generator.generate_similar_question_with_text(
# construct_name=wrong_q['ConstructName'],
# subject_name=wrong_q['SubjectName'],
# question_text=wrong_q['QuestionText'],
# correct_answer_text=wrong_q[f'Answer{wrong_q["CorrectAnswer"]}Text'],
# wrong_answer_text=wrong_q[f'Answer{st.session_state.selected_wrong_answer}Text'],
# misconception_id=misconception_id
# )
# if generated_q:
# return {
# 'question': generated_q.question,
# 'choices': generated_q.choices,
# 'correct': generated_q.correct_answer,
# 'explanation': generated_q.explanation
# }
# except Exception as e:
# logger.error(f"Error generating similar question: {e}")
# st.error(f"๋ฌธ์ ์์ฑ ์ค ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค.")
# return None
# def generate_similar_question(wrong_q, misconception_id, generator):
# """์ ์ฌ ๋ฌธ์ ์์ฑ"""
# # ์
๋ ฅ ๋ฐ์ดํฐ ํ์ธ
# logger.info(f"Generating similar question for misconception_id: {misconception_id}")
# logger.info(f"Wrong question data type: {type(wrong_q)}")
# logger.info(f"Wrong question data: {wrong_q}")
# # wrong_q๊ฐ ๋์
๋๋ฆฌ๊ฐ ์๋ ๊ฒฝ์ฐ ์ฒ๋ฆฌ
# if not isinstance(wrong_q, dict):
# logger.error(f"Invalid wrong_q type: {type(wrong_q)}")
# st.error("์ ์ฌ ๋ฌธ์ ์์ฑ์ ํ์ํ ๋ฐ์ดํฐ ํ์์ด ์๋ชป๋์์ต๋๋ค.")
# return None
# # misconception_id NaN ์ฒดํฌ
# if pd.isna(misconception_id):
# logger.warning("misconception_id ๊ฐ์ด NaN์
๋๋ค. ๊ธฐ๋ณธ ๋ฌธ์ ๋ฅผ ๋ฐํํฉ๋๋ค.")
# return {
# 'question': f"[์ ์ฌ ๋ฌธ์ ] {wrong_q.get('QuestionText', '๋ฌธ์ ๊ฐ ์ ๊ณต๋์ง ์์์ต๋๋ค.')}",
# 'choices': {
# 'A': "๋ณด๊ธฐ A",
# 'B': "๋ณด๊ธฐ B",
# 'C': "๋ณด๊ธฐ C",
# 'D': "๋ณด๊ธฐ D"
# },
# 'correct': 'A',
# 'explanation': "Misconception ID๊ฐ ์ ๊ณต๋์ง ์์ ๊ธฐ๋ณธ ๋ฌธ์ ๋ฅผ ๋ฐํํฉ๋๋ค."
# }
# try:
# # ์ ์ฌ ๋ฌธ์ ์์ฑ
# #logger.info(f"At least I'm in")
# #logger.info(f"Type of wrong_q: {type(wrong_q)}")
# #logger.info(f"Content of wrong_q: {wrong_q}")
# #logger.info(f"Type of misconception_id: {type(misconception_id)}")
# #logger.info(f"Value of misconception_id: {misconception_id}")
# # input ์ ๋ฆฌ
# construct_name=wrong_q['ConstructName'],
# subject_name=wrong_q['SubjectName'],
# question_text=wrong_q['QuestionText'],
# correct_answer_text=wrong_q[f'Answer{wrong_q["CorrectAnswer"]}Text'],
# wrong_answer_text=wrong_q[f'Answer{st.session_state.selected_wrong_answer}Text'],
# misconception_id=int(misconception_id)
# #logger.info(f"Input Arguments: construct_name={construct_name}, subject_name={subject_name}, question_text={question_text}, correct_answer_text={correct_answer_text}, wrong_answer_text={wrong_answer_text}, misconception_id={misconception_id}")
# construct_name = construct_name[0] if isinstance(construct_name, tuple) else construct_name
# subject_name = subject_name[0] if isinstance(subject_name, tuple) else subject_name
# question_text = question_text[0] if isinstance(question_text, tuple) else question_text
# correct_answer_text = correct_answer_text[0] if isinstance(correct_answer_text, tuple) else correct_answer_text
# wrong_answer_text = wrong_answer_text[0] if isinstance(wrong_answer_text, tuple) else wrong_answer_text
# #logger.info(f"construct_name={construct_name}, Type={type(construct_name)}, subject_name={subject_name}, Type={type(subject_name)}")
# #logger.info(f"question_text={question_text}, Type={type(question_text)}, correct_answer_text={correct_answer_text}, Type={type(correct_answer_text)}")
# #logger.info(f"wrong_answer_text={wrong_answer_text}, Type={type(wrong_answer_text)}")
# print("Debugging log block reached")
# #logger.info(f"Cleaned Input Arguments: construct_name={construct_name}, subject_name={subject_name}, question_text={question_text}, correct_answer_text={correct_answer_text}, wrong_answer_text={wrong_answer_text}, misconception_id={misconception_id}")
# #logger.debug(f"Cleaned arguments: {construct_name}, {subject_name}, {question_text}, {correct_answer_text}, {wrong_answer_text}, {misconception_id}")
# # generated_q, _ = generator.generate_similar_question_with_text(
# # construct_name=wrong_q['ConstructName'],
# # subject_name=wrong_q['SubjectName'],
# # question_text=wrong_q['QuestionText'],
# # correct_answer_text=wrong_q[f'Answer{wrong_q["CorrectAnswer"]}Text'],
# # wrong_answer_text=wrong_q[f'Answer{st.session_state.selected_wrong_answer}Text'],
# # misconception_id=int(misconception_id)
# # )
# logger.info(f"Inputs: construct_name={construct_name}, subject_name={subject_name}, question_text={question_text}, correct_answer_text={correct_answer_text}, wrong_answer_text={wrong_answer_text}, misconception_id={misconception_id}")
# generated_q, _ = generator.generate_similar_question_with_text(
# construct_name,
# subject_name,
# question_text,
# correct_answer_text,
# wrong_answer_text,
# misconception_id
# )
# logger.info(f"Generated question type: {type(generated_q)}")
# if generated_q:
# logger.info(f"At least there is something generated")
# return {
# 'question': generated_q.question,
# 'choices': generated_q.choices,
# 'correct': generated_q.correct_answer,
# 'explanation': generated_q.explanation
# }
# except Exception as e:
# # ๋๋ฒ๊น
์ ์ํ ์์ธ ์ค๋ฅ ์ถ๋ ฅ
# logger.error(f"Error generating similar question: {e}")
# st.error(f"๋ฌธ์ ์์ฑ ์ค ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค. {e}")
# return None
# # ๊ธฐ๋ณธ ๋ฌธ์ ๋ฐํ
# return {
# 'question': f"[์ ์ฌ ๋ฌธ์ ] {wrong_q.get('QuestionText', '๋ฌธ์ ๊ฐ ์ ๊ณต๋์ง ์์์ต๋๋ค.')}",
# 'choices': {
# 'A': "์๋ก์ด ๋ณด๊ธฐ A",
# 'B': "์๋ก์ด ๋ณด๊ธฐ B",
# 'C': "์๋ก์ด ๋ณด๊ธฐ C",
# 'D': "์๋ก์ด ๋ณด๊ธฐ D"
# },
# 'correct': 'A',
# 'explanation': f"์ด ๋ฌธ์ ๋ Misconception ID {misconception_id}์ ๊ด๋ จ๋์ด ์์ต๋๋ค."
# }
def generate_similar_question(wrong_q, misconception_id, generator):
"""์ ์ฌ ๋ฌธ์ ์์ฑ"""
logger.info(f"Generating similar question for misconception_id: {misconception_id}")
# ์
๋ ฅ ๋ฐ์ดํฐ ์ ํจ์ฑ ๊ฒ์ฌ
if not isinstance(wrong_q, dict):
logger.error(f"Invalid wrong_q type: {type(wrong_q)}")
st.error("์ ์ฌ ๋ฌธ์ ์์ฑ์ ํ์ํ ๋ฐ์ดํฐ ํ์์ด ์๋ชป๋์์ต๋๋ค.")
return None
# misconception_id๊ฐ ์ ํจํ์ง ํ์ธ
if pd.isna(misconception_id):
logger.warning("misconception_id is NaN")
return None
try:
# ๋ฐ์ดํฐ ์ค๋น (ํํ ๋ณํ ๋ฐฉ์ง)
input_data = {
'construct_name': str(wrong_q.get('ConstructName', '')),
'subject_name': str(wrong_q.get('SubjectName', '')),
'question_text': str(wrong_q.get('QuestionText', '')),
'correct_answer_text': str(wrong_q.get(f'Answer{wrong_q["CorrectAnswer"]}Text', '')),
'wrong_answer_text': str(wrong_q.get(f'Answer{st.session_state.selected_wrong_answer}Text', '')),
'misconception_id': int(misconception_id)
}
logger.info(f"Prepared input data: {input_data}")
# ์ ์ฌ ๋ฌธ์ ์์ฑ ํธ์ถ
generated_q, _ = generator.generate_similar_question_with_text(
construct_name=input_data['construct_name'],
subject_name=input_data['subject_name'],
question_text=input_data['question_text'],
correct_answer_text=input_data['correct_answer_text'],
wrong_answer_text=input_data['wrong_answer_text'],
misconception_id=input_data['misconception_id']
)
if generated_q:
return {
'question': generated_q.question,
'choices': generated_q.choices,
'correct': generated_q.correct_answer,
'explanation': generated_q.explanation
}
except Exception as e:
logger.error(f"Error in generate_similar_question: {str(e)}")
st.error(f"๋ฌธ์ ์์ฑ ์ค ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}")
return None
return None
def handle_answer(answer, current_q):
"""๋ต๋ณ ์ฒ๋ฆฌ"""
if answer != current_q['CorrectAnswer']:
wrong_q_dict = current_q.to_dict()
st.session_state.wrong_questions.append(wrong_q_dict)
st.session_state.selected_wrong_answer = answer
misconception_key = f'Misconception{answer}Id'
misconception_id = current_q.get(misconception_key)
st.session_state.misconceptions.append(misconception_id)
st.session_state.current_question_index += 1
if st.session_state.current_question_index >= 10:
st.session_state.current_step = 'review'
def main():
"""๋ฉ์ธ ์ ํ๋ฆฌ์ผ์ด์
๋ก์ง"""
st.title("MisconcepTutor")
# Generator ์ด๊ธฐํ
generator = load_question_generator()
# ์ด๊ธฐ ํ๋ฉด
if st.session_state.current_step == 'initial':
st.write("#### ํ์ต์ ์์ํ๊ฒ ์ต๋๋ค. 10๊ฐ์ ๋ฌธ์ ๋ฅผ ํ์ด๋ณผ๊น์?")
if st.button("ํ์ต ์์", key="start_quiz"):
start_quiz()
st.rerun()
# ํด์ฆ ํ๋ฉด
elif st.session_state.current_step == 'quiz':
current_q = st.session_state.questions.iloc[st.session_state.current_question_index]
# ์งํ ์ํฉ ํ์
progress = st.session_state.current_question_index / 10
st.progress(progress)
st.write(f"### ๋ฌธ์ {st.session_state.current_question_index + 1}/10")
# ๋ฌธ์ ํ์
st.markdown("---")
st.write(current_q['QuestionText'])
# ๋ณด๊ธฐ ํ์
col1, col2 = st.columns(2)
with col1:
if st.button(f"A) {current_q['AnswerAText']}", key="A"):
handle_answer('A', current_q)
st.rerun()
if st.button(f"C) {current_q['AnswerCText']}", key="C"):
handle_answer('C', current_q)
st.rerun()
with col2:
if st.button(f"B) {current_q['AnswerBText']}", key="B"):
handle_answer('B', current_q)
st.rerun()
if st.button(f"D) {current_q['AnswerDText']}", key="D"):
handle_answer('D', current_q)
st.rerun()
# ๋ณต์ต ํ๋ฉด
elif st.session_state.current_step == 'review':
st.write("### ํ์ต ๊ฒฐ๊ณผ")
# ๊ฒฐ๊ณผ ํต๊ณ
col1, col2, col3 = st.columns(3)
col1.metric("์ด ๋ฌธ์ ์", 10)
col2.metric("๋ง์ ๋ฌธ์ ", 10 - len(st.session_state.wrong_questions))
col3.metric("ํ๋ฆฐ ๋ฌธ์ ", len(st.session_state.wrong_questions))
# ๊ฒฐ๊ณผ์ ๋ฐ๋ฅธ ๋ฉ์์ง ํ์
if len(st.session_state.wrong_questions) == 0:
st.balloons() # ์ถํ ํจ๊ณผ
st.success("๐ ์ถํํฉ๋๋ค! ๋ชจ๋ ๋ฌธ์ ๋ฅผ ๋ง์ถ์
จ์ด์!")
st.markdown("""
### ๐ ์ํ์์ด์ญ๋๋ค!
์๋ฒฝํ ์ ์๋ฅผ ๋ฐ์ผ์
จ๋ค์! ์ํ์ ๊ฐ๋
์ ์ ํํ๊ฒ ์ดํดํ๊ณ ๊ณ์ ๊ฒ ๊ฐ์ต๋๋ค.
""")
elif len(st.session_state.wrong_questions) <= 3:
st.success("์ ํ์
จ์ด์! ์กฐ๊ธ๋ง ๋ ์ฐ์ตํ๋ฉด ์๋ฒฝํ ๊ฑฐ์์!")
else:
st.info("์ฒ์ฒํ ๊ฐ๋
์ ๋ณต์ตํด๋ณด์์. ์ฐ์ตํ๋ค ๋ณด๋ฉด ๋์ด๋ ๊ฑฐ์์!")
# ๋ค๋น๊ฒ์ด์
๋ฒํผ
col1, col2 = st.columns(2)
with col1:
if st.button("๐ ์๋ก์ด ๋ฌธ์ ์ธํธ ์์ํ๊ธฐ", use_container_width=True):
start_quiz()
st.rerun()
with col2:
if st.button("๐ ์ฒ์์ผ๋ก ๋์๊ฐ๊ธฐ", use_container_width=True):
st.session_state.clear()
st.rerun()
# ํ๋ฆฐ ๋ฌธ์ ๋ถ์
if st.session_state.wrong_questions:
st.write("### โ๏ธ ํ๋ฆฐ ๋ฌธ์ ๋ถ์")
for i, (wrong_q, misconception_id) in enumerate(zip(
st.session_state.wrong_questions,
st.session_state.misconceptions
)):
with st.expander(f"๐ ํ๋ฆฐ ๋ฌธ์ #{i + 1}"):
st.write("**๐ ๋ฌธ์ :**")
st.write(wrong_q['QuestionText'])
st.write("**โ
์ ๋ต:**", wrong_q['CorrectAnswer'])
st.write("---")
st.write("**๐ ๊ด๋ จ๋ Misconception:**")
if misconception_id and not pd.isna(misconception_id):
misconception_text = generator.get_misconception_text(misconception_id)
st.info(f"Misconception ID: {int(misconception_id)}\n\n{misconception_text}")
else:
st.info("Misconception ์ ๋ณด๊ฐ ์์ต๋๋ค.")
# try:
# misconception_text = generator.get_misconception_text(misconception_id)
# st.info(f"Misconception ID: {int(misconception_id)}\n\n{misconception_text}")
# except Exception as e:
# logger.error(f"Error in get_misconception_text: {e}")
# st.info("Misconception ์ ๋ณด๊ฐ ์์ต๋๋ค.")
# return None, None
# ์ ์ฌ ๋ฌธ์ ์์ฑ ๋ฒํผ
if st.button(f"๐ ์ ์ฌ ๋ฌธ์ ํ๊ธฐ #{i + 1}", key=f"retry_{i}"):
with st.spinner("์ ์ฌ ๋ฌธ์ ๋ฅผ ์์ฑํ๊ณ ์์ต๋๋ค..."):
logger.info(f"Generating similar question for misconception_id: {misconception_id}")
new_question = generate_similar_question(wrong_q, misconception_id, generator)
if new_question:
st.write("### ๐ฏ ์ ์ฌ ๋ฌธ์ ")
st.write(new_question['question'])
st.write("**๋ณด๊ธฐ:**")
for choice, text in new_question['choices'].items():
st.write(f"{choice}) {text}")
st.write("**โ
์ ๋ต:**", new_question['correct'])
st.write("**๐ ํด์ค:**", new_question['explanation'])
else:
st.error("์ ์ฌ ๋ฌธ์ ๋ฅผ ์์ฑํ ์ ์์ต๋๋ค.")
if __name__ == "__main__":
main()
# random_state 42์์ ์ ๋ต
# D C A A C
# A B B B B
|