burtenshaw
commited on
Commit
·
074bcd7
1
Parent(s):
f6c9d95
add friendly readme
Browse files
README.md
CHANGED
@@ -9,6 +9,91 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
short_description: Deduplicate HuggingFace datasets in seconds
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
short_description: Deduplicate HuggingFace datasets in seconds
|
12 |
+
hf_oauth: true
|
13 |
+
hf_oauth_scopes:
|
14 |
+
- write-repo
|
15 |
+
- manage-repo
|
16 |
---
|
17 |
|
18 |
+
# Semantic Text Deduplication Using SemHash
|
19 |
+
|
20 |
+
This Gradio application performs **semantic deduplication** on HuggingFace datasets using [SemHash](https://github.com/MinishLab/semhash) with [Model2Vec](https://github.com/MinishLab/model2vec) embeddings.
|
21 |
+
|
22 |
+
## Features
|
23 |
+
|
24 |
+
- **Two deduplication modes**:
|
25 |
+
- **Single dataset**: Find and remove duplicates within one dataset
|
26 |
+
- **Cross-dataset**: Remove entries from Dataset 2 that are similar to entries in Dataset 1
|
27 |
+
|
28 |
+
- **Customizable similarity threshold**: Control how strict the deduplication should be (0.0 = very loose, 1.0 = exact matches only)
|
29 |
+
|
30 |
+
- **Detailed results**: View statistics and examples of found duplicates with word-level differences highlighted
|
31 |
+
|
32 |
+
- **Hub Integration**: 🆕 **Push deduplicated datasets directly to the Hugging Face Hub** after logging in
|
33 |
+
|
34 |
+
## How to Use
|
35 |
+
|
36 |
+
### 1. Choose Deduplication Type
|
37 |
+
- **Cross-dataset**: Useful for removing training data contamination from test sets
|
38 |
+
- **Single dataset**: Clean up duplicate entries within a single dataset
|
39 |
+
|
40 |
+
### 2. Configure Datasets
|
41 |
+
- Enter the HuggingFace dataset names (e.g., `SetFit/amazon_massive_scenario_en-US`)
|
42 |
+
- Specify the dataset splits (e.g., `train`, `test`, `validation`)
|
43 |
+
- Set the text column name (usually `text`, `sentence`, or `content`)
|
44 |
+
|
45 |
+
### 3. Set Similarity Threshold
|
46 |
+
- **0.9** (default): Good balance between precision and recall
|
47 |
+
- **Higher values** (0.95-0.99): More conservative, only removes very similar texts
|
48 |
+
- **Lower values** (0.7-0.85): More aggressive, may remove semantically similar but different texts
|
49 |
+
|
50 |
+
### 4. Run Deduplication
|
51 |
+
Click **"Deduplicate"** to start the process. You'll see:
|
52 |
+
- Loading progress for datasets
|
53 |
+
- Deduplication progress
|
54 |
+
- Results with statistics and example duplicates
|
55 |
+
|
56 |
+
### 5. Push to Hub (New!)
|
57 |
+
After deduplication completes:
|
58 |
+
1. **Log in** with your Hugging Face account using the login button
|
59 |
+
2. Enter a **dataset name** for your cleaned dataset
|
60 |
+
3. Click **"Push to Hub"** to upload the deduplicated dataset
|
61 |
+
|
62 |
+
The dataset will be saved as `your-username/dataset-name` and be publicly available.
|
63 |
+
|
64 |
+
## Technical Details
|
65 |
+
|
66 |
+
- **Embedding Model**: Uses `minishlab/potion-base-8M` (Model2Vec) for fast, efficient text embeddings
|
67 |
+
- **Deduplication Algorithm**: SemHash for scalable semantic similarity detection
|
68 |
+
- **Backend**: Runs on CPU (may be slow for large datasets on free tier)
|
69 |
+
|
70 |
+
## Local Usage
|
71 |
+
|
72 |
+
For faster processing of large datasets, run locally:
|
73 |
+
|
74 |
+
```bash
|
75 |
+
git clone <repository-url>
|
76 |
+
cd semantic-deduplication
|
77 |
+
pip install -r requirements.txt
|
78 |
+
python app.py
|
79 |
+
```
|
80 |
+
|
81 |
+
## Examples
|
82 |
+
|
83 |
+
### Cross-dataset Deduplication
|
84 |
+
Remove test set contamination:
|
85 |
+
- **Dataset 1**: `your-org/training-data` (split: `train`)
|
86 |
+
- **Dataset 2**: `your-org/test-data` (split: `test`)
|
87 |
+
- **Result**: Clean test set with training examples removed
|
88 |
+
|
89 |
+
### Single Dataset Cleaning
|
90 |
+
Remove duplicates from a dataset:
|
91 |
+
- **Dataset 1**: `common_voice` (split: `train`)
|
92 |
+
- **Result**: Training set with duplicate audio transcriptions removed
|
93 |
+
|
94 |
+
## Notes
|
95 |
+
|
96 |
+
- The app preserves all original columns from the datasets
|
97 |
+
- Only the text similarity is used for deduplication decisions
|
98 |
+
- Deduplicated datasets maintain the same structure as the original
|
99 |
+
- OAuth login is required only for pushing to the Hub, not for deduplication
|