Spaces:
Sleeping
Sleeping
File size: 23,073 Bytes
fcd327a ffb4def fcd327a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
import json
import os
import time
from functools import wraps
import chromadb
import gradio as gr
from openai import OpenAI
from opensearchpy import OpenSearch
from sentence_transformers import SentenceTransformer
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
def debounce(wait):
def decorator(fn):
last_call = 0
@wraps(fn)
def debounced(*args, **kwargs):
nonlocal last_call
now = time.time()
if now - last_call >= wait:
last_call = now
return fn(*args, **kwargs)
return debounced
return decorator
VECTOR_DB = os.getenv("VECTOR_DB", "chroma")
MODEL = os.getenv("MODEL", "gpt-4o-mini")
TOP_K = 10
host = "localhost"
port = 9200
OPENSEARCH_ADMIN_PASSWORD = os.getenv("OPENSEARCH_ADMIN_PASSWORD", "yw7L5u9nLs3a")
auth = (
"admin",
OPENSEARCH_ADMIN_PASSWORD,
) # For testing only. Don't store credentials in code.
chroma_client = chromadb.Client()
# Create the client with SSL/TLS enabled, but hostname verification disabled.
os_client = OpenSearch(
hosts=[{"host": host, "port": port}],
http_compress=True, # enables gzip compression for request bodies
http_auth=auth,
use_ssl=True,
verify_certs=False,
ssl_assert_hostname=False,
ssl_show_warn=False,
)
all_props = json.load(open("all_properties.json"))
props_core = [
{
"property": prop["property"],
"address": prop["address"],
"school": prop["school"],
"listPrice": prop["listPrice"],
}
for prop in all_props
]
client = OpenAI(
# This is the default and can be omitted
api_key=os.environ.get("OPENAI_API_KEY"),
)
chat_history = []
current_properties = {}
user_criteria = []
scoring_prompt = """
# System Prompt: Real Estate Assistant with JSON Output
You are an AI assistant specializing in real estate. Your role is to handle three types of inputs:
1. General questions about properties or real estate from users.
2. Comments about the user's criteria for properties.
3. A JSON list of properties from another system.
For all types of interactions, your output should always be in JSON format.
## Input Types:
1. General question: A string containing a question about real estate or properties.
2. Criteria update: A string containing the user's comments about their property preferences.
3. Property list: A JSON array of property objects.
## Property Format:
Properties will be in the following JSON format:
{
"address": "Property Address",
"description": "Property Description with Highlights"
}
## Your Tasks:
1. Determine the type of input received.
2. For general questions:
- Provide a clear, concise answer to the question.
3. For criteria updates:
- Update your understanding of the user's preferences.
- Re-score all known properties based on the new criteria.
4. For property lists:
- Update your list of known properties.
- Score each property based on the current understanding of user preferences.
- If no user preferences have been specified yet, use general desirability factors.
## Output Format:
Your output should always be a JSON object with a "type" field indicating the type of response, and additional fields based on the type:
For general questions:
{
"type": "answer",
"content": "Your answer to the question"
}
For criteria updates and property lists:
{
"type": "scoring",
"updatedCriteria": "Brief summary of the current criteria (include this field for criteria updates only)",
"properties": [
{
"address": "Property Address",
"score": 0-100,
"explanation": "Brief explanation for the score with *highlighted* matching criteria"
},
// ... (more properties)
]
}
## Important Considerations:
- Ensure your entire output is valid JSON.
- For general questions, provide accurate and helpful information.
- For criteria updates and property lists:
- Always re-score all known properties.
- Focus on the unique features and highlights mentioned in the property descriptions.
- Be objective and consistent in your scoring across all properties.
- Consider both explicitly stated criteria and implied preferences.
- If no user preferences are known, use general desirability factors.
- In the explanation field, use double asterisks (**) to highlight words or phrases that directly match user criteria.
- Look through all user preferences across interactions.
## Example Inputs and Outputs:
1. General Question:
Input: "What factors should I consider when buying a vacation home?"
Output:
{
"type": "answer",
"content": "When buying a vacation home, consider: 1) Location (proximity to attractions and ease of access), 2) Rental potential if you plan to rent it out, 3) Maintenance costs and property management, 4) Local market conditions and potential for appreciation, 5) Climate and weather patterns, 6) Amenities and nearby services, 7) Security, especially if the home will be vacant for long periods, 8) Insurance costs, which may be higher for second homes, 9) Tax implications, and 10) Your long-term goals for the property."
}
2. Criteria Update:
Input: "I'm interested in properties with a modern kitchen and energy-efficient features."
Output:
{
"type": "scoring",
"updatedCriteria": "Preference for modern kitchens and energy-efficient features",
"properties": [
{
"address": "123 Main St, Anytown, USA",
"score": 85,
"explanation": "This property has a recently updated kitchen, which likely includes **modern** features. While **energy efficiency** isn't explicitly mentioned, the recent updates suggest some improvements in this area."
},
{
"address": "456 Elm St, Somewhere, USA",
"score": 70,
"explanation": "The description mentions *modern* appliances, which may include an **updated kitchen**, but doesn't specifically highlight **energy efficiency** features."
}
]
}
3. Property List:
Input:
[
{
"address": "789 Oak Rd, Newtown, USA",
"description": "Eco-friendly home with solar panels and energy-efficient appliances. Gourmet kitchen with state-of-the-art equipment. Smart home features throughout."
},
{
"address": "101 Pine Ave, Greenville, USA",
"description": "Charming cottage with original features. Cozy kitchen with vintage appeal. Beautiful garden with mature trees."
}
]
Output:
{
"type": "scoring",
"properties": [
{
"address": "789 Oak Rd, Newtown, USA",
"score": 95,
"explanation": "This property strongly matches the criteria with its **energy-efficient** features and **modern**, **gourmet kitchen**. The **state-of-the-art equipment** and smart home features are an added bonus."
},
{
"address": "101 Pine Ave, Greenville, USA",
"score": 60,
"explanation": "While charming, this property doesn't align well with the preferences for **modern kitchens** and **energy efficiency**. The vintage kitchen and lack of mentioned energy features lower its score."
}
]
}
Remember, your goal is to provide helpful information or accurate property scoring based on the input received and all known information, always in a valid JSON format. Track and apply all user preferences across the interactions, and highlight matching criteria in explanations using double asterisks.
"""
categorize_prompt = """
You are an AI assistant specializing in real estate. Your role is to help users find properties that match their criteria and answer general questions about real estate. You must always respond in JSON format with two fields: "type" and "content". Follow these guidelines:
1. Determine if the user is asking a general question about real estate or specifying/updating their property search criteria.
2. Always structure your response as a JSON object with two fields:
- "type": Indicate the type of user message. Use one of the following values:
* "general_question": For general real estate queries or if clarification is needed
* "search_criteria": For specifying or updating property search criteria
- "content": Provide your response here based on the type of message
3. For general questions (type: "general_question"):
- Provide clear, concise answers based on your real estate knowledge in the "content" field.
- Offer additional relevant information if appropriate.
- If the question is outside your expertise, politely say so and suggest consulting a real estate professional.
- If the user's intent is unclear, use this type and ask for clarification in the "content" field.
4. For property search criteria (type: "search_criteria"):
- Identify and summarize the specific criteria mentioned by the user (e.g., location, price range, number of bedrooms, etc.).
- Include only the criteria explicitly stated by the user.
- Do not ask questions or request additional information.
- Present the summary in a clear, concise manner in the "content" field.
5. Always maintain a professional, helpful tone in your "content".
6. Remember previous interactions within the conversation to provide context-aware responses.
7. Be prepared to explain real estate terms or processes if the user seems unfamiliar with them.
8. If the user mentions specific financial concerns, suggest they consult with a financial advisor for personalized advice.
9. Respect privacy and do not ask for or store any personal identifying information.
Remember, your goal is to assist the user in their property search or answer their real estate questions to the best of your ability, while knowing when to defer to human experts for complex or specialized inquiries. Always output your response as a JSON object with "type" and "content" fields.
Examples:
Input: "What's a mortgage?"
Output:
{
"type": "general_question",
"content": "A mortgage is a loan used to purchase real estate, where the property serves as collateral. The borrower repays the loan with interest over a set period, typically 15 or 30 years."
}
Input: "I want a 2-bedroom condo in Miami under $300k"
Output:
{
"type": "search_criteria",
"content": "Updated search criteria: 1) Type: Condo, 2) 2-Bedrooms, 3) Location: Miami, 4) Max price: $300,000"
}
"""
def format_house_markdown(house):
return f"""
Price: {"${:,.0f}".format(house["listingPrice"])}
Size: {house["squareFootage"]} sqft
Bedrooms: {house["bedrooms"]}
Bathrooms: {house["bathrooms"]}
Score: {house["score"]}
Explanation: {house["explanation"]}
Description: {house["publicDescription"]}
"""
def get_search_results(beds, baths, min_size, max_size, min_price, max_price):
if VECTOR_DB == "opensearch":
conditions = [
{"range": {"listingPrice": {"gte": min_price, "lte": max_price}}},
{"range": {"squareFootage": {"gte": min_size, "lte": max_size}}},
]
if beds:
conditions.append({"terms": {"bedrooms": beds}})
if baths:
conditions.append({"terms": {"bathrooms": baths}})
if user_criteria:
embedding = embedding_model.encode(" ".join(user_criteria)).tolist()
conditions.append(
{"knn": {"publicDescriptionKnn": {"vector": embedding, "k": TOP_K}}}
)
result = os_client.search(
index="datafiniti_props",
body={"size": TOP_K, "query": {"bool": {"must": conditions}}},
)
houses = [hit["_source"] for hit in result["hits"]["hits"]]
return houses
elif VECTOR_DB == "chroma":
collection = chroma_client.get_collection(name="datafiniti_properties")
query_text = ""
if user_criteria:
query_text = " ".join(user_criteria)
where_conditions = [
{
"listingPrice": {"$gte": min_price},
},
{
"listingPrice": {"$lte": max_price},
},
{
"squareFootage": {"$gte": min_size},
},
{
"squareFootage": {"$lte": max_size},
},
]
if beds:
where_conditions.append({"bedrooms": {"$in": beds}})
if baths:
where_conditions.append({"bathrooms": {"$in": baths}})
results = collection.query(
query_texts=[query_text],
where={"$and": where_conditions},
n_results=TOP_K,
)
all_values = []
for metadata, document in zip(results["metadatas"][0], results["documents"][0]):
metadata["publicDescription"] = document
all_values.append(metadata)
return all_values
else:
with open("sunnyvale.json", "r") as f:
data = json.load(f)
def condition(house):
if beds:
if house["bedrooms"] not in beds:
return False
if baths:
if house["bathrooms"] not in baths:
return False
if (
house["listingPrice"] < min_price
or house["listingPrice"] > max_price
):
return False
if (
house["squareFootage"] < min_size
or house["squareFootage"] > max_size
):
return False
return True
data = list(filter(condition, data))
return data
def update_property_list_and_get_response(
beds, baths, min_size, max_size, min_price, max_price
):
houses = get_search_results(
beds=beds,
baths=baths,
min_size=min_size,
max_size=max_size,
min_price=min_price,
max_price=max_price,
)
global current_properties
current_properties = dict([(house["address"], house) for house in houses])
print(
f"updating current properties to {[property['address'] for property in current_properties.values()]} due to filters change"
)
model_input = json.dumps(
[
{"address": house["address"], "description": house["publicDescription"]}
for house in houses
]
)
output = get_scoring_output(
model_input,
)
print("updating properties details due to filter change")
update_property_details(output)
output_text = get_scoring_response_to_user(output)
return output_text
# @debounce(1)
def update_filters(
beds,
baths,
min_size,
max_size,
min_price,
max_price,
history,
):
"""
Triggered by filters and criteria change, update the list of properties, and re-score
"""
output_text = update_property_list_and_get_response(
beds, baths, min_size, max_size, min_price, max_price
)
history.append(("Updated filters, recalculating recommendations...", output_text))
return history, str(time.time())
def update_property_details(output_str):
global current_properties
output = json.loads(output_str)
for property in output["properties"]:
address = property["address"]
current_properties[address]["score"] = property["score"]
current_properties[address]["explanation"] = property["explanation"]
def get_scoring_output(user_message):
"""
Takes in message (could come from user, or ES search result), outputs LLM response
"""
print(f"taking in message {user_message}")
messages = (
[
{
"role": "system",
"content": scoring_prompt,
},
]
+ [
{
"role": "user",
"content": criteria_update,
}
for criteria_update in user_criteria
]
+ [
{
"role": "user",
"content": user_message,
}
]
)
print(f"sending {messages=}")
chat_completion = client.chat.completions.create(
messages=messages,
model=MODEL,
)
content = chat_completion.choices[0].message.content
print(f"model output: {content}")
chat_history.append(
{
"role": "user",
"content": user_message,
}
)
chat_history.append({"role": "assistant", "content": content})
return content
def get_scoring_response_to_user(message_str):
"""
Parse model's message in JSON and return text to user
"""
message = json.loads(message_str)
if message["type"] == "scoring":
if not message["properties"]:
return "Thank for providing your criteria, please update filters to see recommendations"
recommended_property = sorted(
message["properties"], key=lambda item: item["score"], reverse=True
)[0]
return f"""
Based on the criteria, I recommended {recommended_property["address"]}. {recommended_property["explanation"]}
"""
else:
return message["content"]
def categorize_user_input(message):
"""
Categorize user input as general question or search criteria
"""
messages = (
[
{
"role": "system",
"content": categorize_prompt,
}
]
+ chat_history
+ [
{
"role": "user",
"content": message,
},
]
)
chat_completion = client.chat.completions.create(
messages=messages,
model=MODEL,
)
content = chat_completion.choices[0].message.content
# no need to store this in chat history
return content
def process_user_input(
message,
history,
beds,
baths,
min_size,
max_size,
min_price,
max_price,
):
categorization_str = categorize_user_input(message)
categorization = json.loads(categorization_str)
if categorization["type"] == "general_question":
response_text = categorization["content"]
else:
global user_criteria
user_criteria.append(message)
print(f"appending user criteria {user_criteria}")
response_text = update_property_list_and_get_response(
beds, baths, min_size, max_size, min_price, max_price
)
history.append((message, response_text))
return "", history, str(time.time())
# Create Gradio Interface
with gr.Blocks() as demo:
label_trigger = gr.Label("", visible=False)
version = gr.Label("Build 09032024")
# Top Section with a Textbox and a Slider
with gr.Column():
beds = gr.CheckboxGroup([1, 2, 3, 4, 5], label="Beds")
baths = gr.CheckboxGroup([1, 2, 3, 4, 5], label="Baths")
min_size_slider = gr.Slider(
label="Minimal Size Sqft",
value=0,
minimum=0,
maximum=5000,
step=100,
)
max_size_slider = gr.Slider(
label="Maximal Size Sqft",
value=10000,
minimum=0,
maximum=5000,
step=100,
)
min_price_slider = gr.Slider(
label="Minimal Price $",
value=0,
minimum=0,
maximum=10000000,
step=10000,
)
max_price_slider = gr.Slider(
label="Maximal Price $",
value=10000000,
minimum=0,
maximum=10000000,
step=10000,
)
all_filters = [
beds,
baths,
min_size_slider,
max_size_slider,
min_price_slider,
max_price_slider,
]
# Bottom Section with ChatInterface and Canvas
with gr.Row():
with gr.Column():
chat_interface = gr.Chatbot(label="Chat Interface", elem_id="chat")
msg = gr.Textbox()
@gr.render(triggers=[label_trigger.change])
def show_accordions():
if not current_properties:
return
sorted_properties = sorted(
list(current_properties.values()),
key=lambda item: item["score"],
reverse=True,
)
highest_score = sorted_properties[0]["score"]
with gr.Column():
for property in sorted_properties:
with gr.Accordion(
f'{property["address"]} {"${:,.0f}".format(property["listingPrice"])} {property["squareFootage"]} sqft {property["bedrooms"]}bed{property["bathrooms"]}bath',
open=True if property["score"] == highest_score else False,
):
gr.Markdown(value=format_house_markdown(property))
msg.submit(
process_user_input,
[msg, chat_interface] + all_filters,
[msg, chat_interface, label_trigger],
)
for item in all_filters:
if isinstance(item, gr.Slider):
item.release(
update_filters,
all_filters + [chat_interface],
[chat_interface, label_trigger],
)
else:
item.change(
update_filters,
all_filters + [chat_interface],
[chat_interface, label_trigger],
)
def load_data_to_chroma():
import chromadb
chroma_client = chromadb.Client()
try:
collection = chroma_client.create_collection(name="datafiniti_properties")
except:
print("data is already added, exit")
return
ids = []
documents = []
metadatas = []
with open("datafiniti_properties_sunnyvale_400.json", "r") as f:
for line in f:
property = json.loads(line)
try:
print(f'indexing {property["address"]}')
bathrooms = int(property["numBathroom"])
beds = property["numBedroom"]
price = property["mostRecentPriceAmount"]
size = property["floorSizeValue"]
address = ", ".join(
[
property["address"],
property["city"],
property["province"],
property["postalCode"][:5],
]
)
descriptions = property["descriptions"]
descriptions = sorted(
descriptions, key=lambda x: x["dateSeen"], reverse=True
)
description = descriptions[0]["value"]
metadata = {
"bathrooms": bathrooms,
"bedrooms": beds,
"listingPrice": price,
"squareFootage": size,
"address": address,
}
ids.append(address)
documents.append(description)
metadatas.append(metadata)
except Exception as e:
print(e)
pass
collection.add(ids=ids, documents=documents, metadatas=metadatas)
load_data_to_chroma()
# Launch the Gradio Interface
demo.launch()
|