import gradio as gr import transformers as t import torch # Load your fine-tuned model and tokenizer model = t.AutoModelForCausalLM.from_pretrained("./weights") tokenizer = t.AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-hf") tokenizer.pad_token_id = 0 # Define a prediction function def generate_article(title): prompt = f"Below is a title for an article. Write an article that appropriately suits the title: \n\n### Title:\n{title}\n\n### Article:\n" pipe = t.pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=1000) output = pipe([prompt]) generated_article = output[0][0]["generated_text"] return generated_article # Create a Gradio interface iface = gr.Interface( fn=generate_article, inputs=gr.inputs.Textbox(lines=2, placeholder="Enter Article Title Here"), outputs="text", title="Article Generator", description="Enter a title to generate an article." ) # Launch the app iface.launch()