Refactor app.py for improved readability and organization; rearranged imports, added spacing, and formatted code blocks.
Browse files
app.py
CHANGED
@@ -1,12 +1,15 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
-
import pickle
|
3 |
import os
|
4 |
-
|
5 |
-
from nlp4web_codebase.ir.data_loaders.dm import Document
|
6 |
-
from collections import Counter
|
7 |
-
import tqdm
|
8 |
import re
|
|
|
|
|
|
|
|
|
9 |
import nltk
|
|
|
|
|
|
|
|
|
10 |
nltk.download("stopwords", quiet=True)
|
11 |
from nltk.corpus import stopwords as nltk_stopwords
|
12 |
|
@@ -18,22 +21,30 @@ stopwords = set(nltk_stopwords.words(LANGUAGE))
|
|
18 |
def word_splitting(text: str) -> List[str]:
|
19 |
return word_splitter(text.lower())
|
20 |
|
|
|
21 |
def lemmatization(words: List[str]) -> List[str]:
|
22 |
return words # We ignore lemmatization here for simplicity
|
23 |
|
|
|
24 |
def simple_tokenize(text: str) -> List[str]:
|
25 |
words = word_splitting(text)
|
26 |
tokenized = list(filter(lambda w: w not in stopwords, words))
|
27 |
tokenized = lemmatization(tokenized)
|
28 |
return tokenized
|
29 |
|
|
|
30 |
T = TypeVar("T", bound="InvertedIndex")
|
31 |
|
|
|
32 |
@dataclass
|
33 |
class PostingList:
|
34 |
term: str # The term
|
35 |
-
docid_postings: List[
|
36 |
-
|
|
|
|
|
|
|
|
|
37 |
|
38 |
|
39 |
@dataclass
|
@@ -72,6 +83,7 @@ class Counting:
|
|
72 |
nterms: int
|
73 |
doc_texts: Optional[List[str]] = None
|
74 |
|
|
|
75 |
def run_counting(
|
76 |
documents: Iterable[Document],
|
77 |
tokenize_fn: Callable[[str], List[str]] = simple_tokenize,
|
@@ -131,22 +143,23 @@ def run_counting(
|
|
131 |
doc_texts=doc_texts,
|
132 |
)
|
133 |
|
|
|
134 |
from nlp4web_codebase.ir.data_loaders.sciq import load_sciq
|
|
|
135 |
sciq = load_sciq()
|
136 |
counting = run_counting(documents=iter(sciq.corpus), ndocs=len(sciq.corpus))
|
137 |
|
138 |
from __future__ import annotations
|
139 |
-
|
140 |
import math
|
141 |
-
import
|
142 |
from typing import Iterable, List, Optional, Type
|
143 |
-
|
144 |
from nlp4web_codebase.ir.data_loaders.dm import Document
|
145 |
|
146 |
|
147 |
@dataclass
|
148 |
class BM25Index(InvertedIndex):
|
149 |
-
|
150 |
@staticmethod
|
151 |
def tokenize(text: str) -> List[str]:
|
152 |
return simple_tokenize(text)
|
@@ -230,6 +243,7 @@ class BM25Index(InvertedIndex):
|
|
230 |
)
|
231 |
return index
|
232 |
|
|
|
233 |
bm25_index = BM25Index.build_from_documents(
|
234 |
documents=iter(sciq.corpus),
|
235 |
ndocs=12160,
|
@@ -237,13 +251,13 @@ bm25_index = BM25Index.build_from_documents(
|
|
237 |
)
|
238 |
bm25_index.save("output/bm25_index")
|
239 |
|
240 |
-
from nlp4web_codebase.ir.models import BaseRetriever
|
241 |
-
from typing import Type
|
242 |
from abc import abstractmethod
|
|
|
243 |
|
|
|
244 |
|
245 |
-
class BaseInvertedIndexRetriever(BaseRetriever):
|
246 |
|
|
|
247 |
@property
|
248 |
@abstractmethod
|
249 |
def index_class(self) -> Type[InvertedIndex]:
|
@@ -295,16 +309,48 @@ class BaseInvertedIndexRetriever(BaseRetriever):
|
|
295 |
|
296 |
|
297 |
class BM25Retriever(BaseInvertedIndexRetriever):
|
298 |
-
|
299 |
@property
|
300 |
def index_class(self) -> Type[BM25Index]:
|
301 |
return BM25Index
|
302 |
|
|
|
303 |
bm25_retriever = BM25Retriever(index_dir="output/bm25_index")
|
304 |
-
bm25_retriever.retrieve(
|
|
|
|
|
305 |
|
306 |
-
plots_b = {
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
best_b = plots_b["X"][np.argmax(plots_b["Y"])]
|
310 |
best_k1 = plots_k1["X"][np.argmax(plots_k1["Y"])]
|
@@ -313,23 +359,26 @@ bm25_index = BM25Index.build_from_documents(
|
|
313 |
ndocs=12160,
|
314 |
show_progress_bar=True,
|
315 |
k1=best_k1,
|
316 |
-
b=best_b
|
317 |
)
|
318 |
|
319 |
-
import gradio as gr
|
320 |
from typing import TypedDict
|
321 |
-
|
|
|
|
|
322 |
|
323 |
class Hit(TypedDict):
|
324 |
-
|
325 |
-
|
326 |
-
|
|
|
327 |
|
328 |
demo: Optional[gr.Interface] = None # Assign your gradio demo to this variable
|
329 |
return_type = List[Hit]
|
330 |
|
|
|
331 |
## YOUR_CODE_STARTS_HERE
|
332 |
-
def retrieve(query: str, topk: int=10) -> return_type:
|
333 |
ranking = bm25_retriever.retrieve(query=query, topk=3)
|
334 |
hits = []
|
335 |
for cid, score in ranking.items():
|
@@ -337,6 +386,7 @@ def retrieve(query: str, topk: int=10) -> return_type:
|
|
337 |
hits.append({"cid": cid, "score": score, "text": text})
|
338 |
return hits
|
339 |
|
|
|
340 |
demo = gr.Interface(
|
341 |
fn=retrieve,
|
342 |
inputs=gr.Textbox(lines=3, placeholder="Enter your query here..."),
|
@@ -347,7 +397,7 @@ demo = gr.Interface(
|
|
347 |
["What are the differences between immunodeficiency and autoimmune diseases?"],
|
348 |
["What are the causes of immunodeficiency?"],
|
349 |
["What are the symptoms of immunodeficiency?"],
|
350 |
-
]
|
351 |
)
|
352 |
## YOUR_CODE_ENDS_HERE
|
353 |
-
demo.launch()
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import pickle
|
|
|
|
|
|
|
3 |
import re
|
4 |
+
from collections import Counter
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import Callable, Dict, Iterable, List, Optional, Type, TypeVar
|
7 |
+
|
8 |
import nltk
|
9 |
+
import tqdm
|
10 |
+
|
11 |
+
from nlp4web_codebase.ir.data_loaders.dm import Document
|
12 |
+
|
13 |
nltk.download("stopwords", quiet=True)
|
14 |
from nltk.corpus import stopwords as nltk_stopwords
|
15 |
|
|
|
21 |
def word_splitting(text: str) -> List[str]:
|
22 |
return word_splitter(text.lower())
|
23 |
|
24 |
+
|
25 |
def lemmatization(words: List[str]) -> List[str]:
|
26 |
return words # We ignore lemmatization here for simplicity
|
27 |
|
28 |
+
|
29 |
def simple_tokenize(text: str) -> List[str]:
|
30 |
words = word_splitting(text)
|
31 |
tokenized = list(filter(lambda w: w not in stopwords, words))
|
32 |
tokenized = lemmatization(tokenized)
|
33 |
return tokenized
|
34 |
|
35 |
+
|
36 |
T = TypeVar("T", bound="InvertedIndex")
|
37 |
|
38 |
+
|
39 |
@dataclass
|
40 |
class PostingList:
|
41 |
term: str # The term
|
42 |
+
docid_postings: List[
|
43 |
+
int
|
44 |
+
] # docid_postings[i] means the docid (int) of the i-th associated posting
|
45 |
+
tweight_postings: List[
|
46 |
+
float
|
47 |
+
] # tweight_postings[i] means the term weight (float) of the i-th associated posting
|
48 |
|
49 |
|
50 |
@dataclass
|
|
|
83 |
nterms: int
|
84 |
doc_texts: Optional[List[str]] = None
|
85 |
|
86 |
+
|
87 |
def run_counting(
|
88 |
documents: Iterable[Document],
|
89 |
tokenize_fn: Callable[[str], List[str]] = simple_tokenize,
|
|
|
143 |
doc_texts=doc_texts,
|
144 |
)
|
145 |
|
146 |
+
|
147 |
from nlp4web_codebase.ir.data_loaders.sciq import load_sciq
|
148 |
+
|
149 |
sciq = load_sciq()
|
150 |
counting = run_counting(documents=iter(sciq.corpus), ndocs=len(sciq.corpus))
|
151 |
|
152 |
from __future__ import annotations
|
153 |
+
|
154 |
import math
|
155 |
+
from dataclasses import dataclass
|
156 |
from typing import Iterable, List, Optional, Type
|
157 |
+
|
158 |
from nlp4web_codebase.ir.data_loaders.dm import Document
|
159 |
|
160 |
|
161 |
@dataclass
|
162 |
class BM25Index(InvertedIndex):
|
|
|
163 |
@staticmethod
|
164 |
def tokenize(text: str) -> List[str]:
|
165 |
return simple_tokenize(text)
|
|
|
243 |
)
|
244 |
return index
|
245 |
|
246 |
+
|
247 |
bm25_index = BM25Index.build_from_documents(
|
248 |
documents=iter(sciq.corpus),
|
249 |
ndocs=12160,
|
|
|
251 |
)
|
252 |
bm25_index.save("output/bm25_index")
|
253 |
|
|
|
|
|
254 |
from abc import abstractmethod
|
255 |
+
from typing import Type
|
256 |
|
257 |
+
from nlp4web_codebase.ir.models import BaseRetriever
|
258 |
|
|
|
259 |
|
260 |
+
class BaseInvertedIndexRetriever(BaseRetriever):
|
261 |
@property
|
262 |
@abstractmethod
|
263 |
def index_class(self) -> Type[InvertedIndex]:
|
|
|
309 |
|
310 |
|
311 |
class BM25Retriever(BaseInvertedIndexRetriever):
|
|
|
312 |
@property
|
313 |
def index_class(self) -> Type[BM25Index]:
|
314 |
return BM25Index
|
315 |
|
316 |
+
|
317 |
bm25_retriever = BM25Retriever(index_dir="output/bm25_index")
|
318 |
+
bm25_retriever.retrieve(
|
319 |
+
"What type of diseases occur when the immune system attacks normal body cells?"
|
320 |
+
)
|
321 |
|
322 |
+
plots_b = {
|
323 |
+
"X": [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
|
324 |
+
"Y": [
|
325 |
+
0.694980045351474,
|
326 |
+
0.8126195011337869,
|
327 |
+
0.821528798185941,
|
328 |
+
0.8218562358276644,
|
329 |
+
0.8222244897959182,
|
330 |
+
0.8195024943310657,
|
331 |
+
0.8182163265306123,
|
332 |
+
0.8174734693877551,
|
333 |
+
0.8139020408163266,
|
334 |
+
0.8116893424036281,
|
335 |
+
0.8083002267573697,
|
336 |
+
],
|
337 |
+
} # TODO: Replace
|
338 |
+
plots_k1 = {
|
339 |
+
"X": [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
|
340 |
+
"Y": [
|
341 |
+
0.7345419501133786,
|
342 |
+
0.7668607709750567,
|
343 |
+
0.779508843537415,
|
344 |
+
0.7900947845804988,
|
345 |
+
0.8015931972789115,
|
346 |
+
0.8103560090702948,
|
347 |
+
0.812374149659864,
|
348 |
+
0.8156743764172336,
|
349 |
+
0.8194036281179138,
|
350 |
+
0.8222244897959182,
|
351 |
+
0.8221800453514739,
|
352 |
+
],
|
353 |
+
}
|
354 |
|
355 |
best_b = plots_b["X"][np.argmax(plots_b["Y"])]
|
356 |
best_k1 = plots_k1["X"][np.argmax(plots_k1["Y"])]
|
|
|
359 |
ndocs=12160,
|
360 |
show_progress_bar=True,
|
361 |
k1=best_k1,
|
362 |
+
b=best_b,
|
363 |
)
|
364 |
|
|
|
365 |
from typing import TypedDict
|
366 |
+
|
367 |
+
import gradio as gr
|
368 |
+
|
369 |
|
370 |
class Hit(TypedDict):
|
371 |
+
cid: str
|
372 |
+
score: float
|
373 |
+
text: str
|
374 |
+
|
375 |
|
376 |
demo: Optional[gr.Interface] = None # Assign your gradio demo to this variable
|
377 |
return_type = List[Hit]
|
378 |
|
379 |
+
|
380 |
## YOUR_CODE_STARTS_HERE
|
381 |
+
def retrieve(query: str, topk: int = 10) -> return_type:
|
382 |
ranking = bm25_retriever.retrieve(query=query, topk=3)
|
383 |
hits = []
|
384 |
for cid, score in ranking.items():
|
|
|
386 |
hits.append({"cid": cid, "score": score, "text": text})
|
387 |
return hits
|
388 |
|
389 |
+
|
390 |
demo = gr.Interface(
|
391 |
fn=retrieve,
|
392 |
inputs=gr.Textbox(lines=3, placeholder="Enter your query here..."),
|
|
|
397 |
["What are the differences between immunodeficiency and autoimmune diseases?"],
|
398 |
["What are the causes of immunodeficiency?"],
|
399 |
["What are the symptoms of immunodeficiency?"],
|
400 |
+
],
|
401 |
)
|
402 |
## YOUR_CODE_ENDS_HERE
|
403 |
+
demo.launch()
|