Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from flask_cors import CORS
|
3 |
+
from PIL import Image
|
4 |
+
import io
|
5 |
+
import os
|
6 |
+
|
7 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
8 |
+
import torch
|
9 |
+
import fitz # PyMuPDF
|
10 |
+
|
11 |
+
# Initialize Flask
|
12 |
+
app = Flask(__name__)
|
13 |
+
CORS(app)
|
14 |
+
|
15 |
+
# Load Donut model and processor
|
16 |
+
device = "cpu"
|
17 |
+
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base")
|
18 |
+
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base").to(device)
|
19 |
+
model.eval()
|
20 |
+
|
21 |
+
def convert_pdf_to_image(file_stream):
|
22 |
+
doc = fitz.open(stream=file_stream.read(), filetype="pdf")
|
23 |
+
page = doc.load_page(0)
|
24 |
+
pix = page.get_pixmap(dpi=150)
|
25 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
26 |
+
return img
|
27 |
+
|
28 |
+
@app.route("/ocr", methods=["POST"])
|
29 |
+
def ocr():
|
30 |
+
if "file" not in request.files:
|
31 |
+
return jsonify({"error": "No file uploaded"}), 400
|
32 |
+
|
33 |
+
file = request.files["file"]
|
34 |
+
filename = file.filename.lower()
|
35 |
+
|
36 |
+
# Convert input to PIL image
|
37 |
+
if filename.endswith(".pdf"):
|
38 |
+
image = convert_pdf_to_image(file)
|
39 |
+
else:
|
40 |
+
image = Image.open(io.BytesIO(file.read())).convert("RGB")
|
41 |
+
|
42 |
+
# Preprocess image
|
43 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values.to(device)
|
44 |
+
|
45 |
+
# Run model
|
46 |
+
with torch.no_grad():
|
47 |
+
output = model.generate(pixel_values, max_length=512, return_dict_in_generate=True)
|
48 |
+
|
49 |
+
# Decode output
|
50 |
+
parsed_text = processor.batch_decode(output.sequences)[0]
|
51 |
+
parsed_text = processor.tokenizer.decode(output.sequences[0], skip_special_tokens=True)
|
52 |
+
|
53 |
+
return jsonify({"text": parsed_text})
|
54 |
+
|
55 |
+
|
56 |
+
@app.route("/", methods=["GET"])
|
57 |
+
def index():
|
58 |
+
return "Smart OCR Flask API (Donut-based)"
|
59 |
+
|
60 |
+
if __name__ == "__main__":
|
61 |
+
app.run(host="0.0.0.0", port=7860)
|