Spaces:
Running
Running
Update Dockerfile
Browse files- Dockerfile +335 -100
Dockerfile
CHANGED
@@ -1,118 +1,353 @@
|
|
1 |
-
FROM
|
2 |
|
3 |
# Set environment variables
|
4 |
ENV DEBIAN_FRONTEND=noninteractive
|
5 |
-
ENV
|
6 |
-
ENV
|
7 |
-
ENV
|
8 |
-
ENV
|
9 |
-
ENV
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
&& rm -rf /var/lib/apt/lists/*
|
18 |
|
19 |
-
# Install
|
20 |
-
RUN
|
21 |
-
apt-get update && \
|
22 |
-
apt-get install -y python3.11 python3.11-venv python3.11-dev && \
|
23 |
-
update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.11 1 && \
|
24 |
-
update-alternatives --set python3 /usr/bin/python3.11 && \
|
25 |
-
curl -sS https://bootstrap.pypa.io/get-pip.py | python3.11
|
26 |
|
27 |
-
# Install
|
28 |
-
RUN curl -
|
29 |
-
echo 'export PATH="$HOME/.local/bin:$PATH"' >> ~/.bashrc
|
30 |
|
31 |
-
#
|
32 |
-
RUN
|
33 |
-
WORKDIR /workspace
|
34 |
|
35 |
-
#
|
36 |
-
|
37 |
-
RUN python3 -m venv /opt/unsloth-env
|
38 |
-
ENV PATH="/opt/unsloth-env/bin:$PATH"
|
39 |
|
40 |
-
#
|
41 |
-
RUN
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
#
|
45 |
-
RUN
|
46 |
|
47 |
-
#
|
48 |
-
RUN
|
49 |
-
cd /tmp/xformers && \
|
50 |
-
/opt/unsloth-env/bin/pip uninstall -y xformers && \
|
51 |
-
/opt/unsloth-env/bin/python setup.py install && \
|
52 |
-
rm -rf /tmp/xformers
|
53 |
|
54 |
-
#
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
#
|
58 |
-
RUN /
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
#
|
61 |
-
RUN
|
|
|
|
|
|
|
62 |
|
63 |
-
#
|
64 |
-
RUN
|
65 |
-
|
66 |
-
|
67 |
-
npm
|
68 |
-
apt-get clean && \
|
69 |
-
rm -rf /var/lib/apt/lists/*
|
70 |
|
71 |
-
#
|
72 |
-
RUN
|
73 |
|
74 |
# Configure code-server
|
75 |
-
RUN mkdir -p /root/.config/code-server
|
76 |
-
|
77 |
-
|
78 |
-
#
|
79 |
-
RUN
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
# Create
|
84 |
-
RUN
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM runpod/pytorch:2.8.0-py3.11-cuda12.8.1-cudnn-devel-ubuntu22.04
|
2 |
|
3 |
# Set environment variables
|
4 |
ENV DEBIAN_FRONTEND=noninteractive
|
5 |
+
ENV PYTHONUNBUFFERED=1
|
6 |
+
ENV HF_HUB_ENABLE_HF_TRANSFER=1
|
7 |
+
ENV CUDA_VISIBLE_DEVICES=all
|
8 |
+
ENV NVIDIA_VISIBLE_DEVICES=all
|
9 |
+
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
10 |
+
ENV LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
|
11 |
+
ENV PATH=/usr/local/cuda/bin:$PATH
|
12 |
+
|
13 |
+
# Install system dependencies
|
14 |
+
RUN apt-get update && apt-get install -y \
|
15 |
+
wget \
|
16 |
+
curl \
|
17 |
+
git \
|
18 |
+
vim \
|
19 |
+
tmux \
|
20 |
+
htop \
|
21 |
+
nvtop \
|
22 |
+
build-essential \
|
23 |
+
software-properties-common \
|
24 |
+
ca-certificates \
|
25 |
+
gnupg \
|
26 |
+
lsb-release \
|
27 |
+
sudo \
|
28 |
+
openssh-server \
|
29 |
+
nginx \
|
30 |
+
supervisor \
|
31 |
&& rm -rf /var/lib/apt/lists/*
|
32 |
|
33 |
+
# Install code-server (VSCode in browser)
|
34 |
+
RUN curl -fsSL https://code-server.dev/install.sh | sh
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# Install Ollama
|
37 |
+
RUN curl -fsSL https://ollama.com/install.sh | sh
|
|
|
38 |
|
39 |
+
# Upgrade pip and install base Python packages
|
40 |
+
RUN pip install --upgrade pip setuptools wheel
|
|
|
41 |
|
42 |
+
# Install hf_transfer first for faster downloads
|
43 |
+
RUN pip install hf_transfer
|
|
|
|
|
44 |
|
45 |
+
# Install critical ML infrastructure
|
46 |
+
RUN pip install \
|
47 |
+
accelerate \
|
48 |
+
transformers \
|
49 |
+
datasets \
|
50 |
+
peft \
|
51 |
+
bitsandbytes \
|
52 |
+
safetensors \
|
53 |
+
sentencepiece \
|
54 |
+
protobuf \
|
55 |
+
scipy \
|
56 |
+
einops \
|
57 |
+
wandb \
|
58 |
+
tensorboard
|
59 |
|
60 |
+
# Install vLLM with CUDA 12.8 support
|
61 |
+
RUN pip install vllm --extra-index-url https://download.pytorch.org/whl/cu128
|
62 |
|
63 |
+
# Install Flash Attention 2 (critical for 5090)
|
64 |
+
RUN pip install flash-attn --no-build-isolation
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
# Install Unsloth with 5090 patches
|
67 |
+
# Using the approach from the referenced repo
|
68 |
+
RUN git clone https://github.com/unslothai/unsloth.git /tmp/unsloth && \
|
69 |
+
cd /tmp/unsloth && \
|
70 |
+
pip install -e . && \
|
71 |
+
cd / && \
|
72 |
+
rm -rf /tmp/unsloth/.git
|
73 |
|
74 |
+
# Install Axolotl
|
75 |
+
RUN git clone https://github.com/axolotl-ai-cloud/axolotl /tmp/axolotl && \
|
76 |
+
cd /tmp/axolotl && \
|
77 |
+
pip install -e . && \
|
78 |
+
cd / && \
|
79 |
+
rm -rf /tmp/axolotl/.git
|
80 |
|
81 |
+
# Install Open-WebUI dependencies
|
82 |
+
RUN apt-get update && apt-get install -y \
|
83 |
+
nodejs \
|
84 |
+
npm \
|
85 |
+
&& rm -rf /var/lib/apt/lists/*
|
86 |
|
87 |
+
# Clone and setup Open-WebUI
|
88 |
+
RUN git clone https://github.com/open-webui/open-webui.git /opt/open-webui && \
|
89 |
+
cd /opt/open-webui && \
|
90 |
+
npm install && \
|
91 |
+
npm run build
|
|
|
|
|
92 |
|
93 |
+
# Create workspace directory
|
94 |
+
RUN mkdir -p /workspace
|
95 |
|
96 |
# Configure code-server
|
97 |
+
RUN mkdir -p /root/.config/code-server
|
98 |
+
RUN echo "bind-addr: 0.0.0.0:8080\nauth: none\ncert: false" > /root/.config/code-server/config.yaml
|
99 |
+
|
100 |
+
# Configure SSH (optional but useful)
|
101 |
+
RUN mkdir /var/run/sshd
|
102 |
+
RUN echo 'root:runpod' | chpasswd
|
103 |
+
RUN sed -i 's/#PermitRootLogin prohibit-password/PermitRootLogin yes/' /etc/ssh/sshd_config
|
104 |
+
|
105 |
+
# Create supervisor config to run all services
|
106 |
+
RUN mkdir -p /etc/supervisor/conf.d
|
107 |
+
RUN cat > /etc/supervisor/conf.d/services.conf << 'EOF'
|
108 |
+
[supervisord]
|
109 |
+
nodaemon=true
|
110 |
+
|
111 |
+
[program:code-server]
|
112 |
+
command=code-server --bind-addr 0.0.0.0:8080 --auth none
|
113 |
+
autostart=true
|
114 |
+
autorestart=true
|
115 |
+
stderr_logfile=/var/log/code-server.err.log
|
116 |
+
stdout_logfile=/var/log/code-server.out.log
|
117 |
+
|
118 |
+
[program:ollama]
|
119 |
+
command=ollama serve
|
120 |
+
autostart=true
|
121 |
+
autorestart=true
|
122 |
+
environment=OLLAMA_HOST="0.0.0.0"
|
123 |
+
stderr_logfile=/var/log/ollama.err.log
|
124 |
+
stdout_logfile=/var/log/ollama.out.log
|
125 |
+
|
126 |
+
[program:sshd]
|
127 |
+
command=/usr/sbin/sshd -D
|
128 |
+
autostart=true
|
129 |
+
autorestart=true
|
130 |
+
|
131 |
+
[program:open-webui]
|
132 |
+
command=cd /opt/open-webui && npm start
|
133 |
+
autostart=true
|
134 |
+
autorestart=true
|
135 |
+
environment=PORT="3000",OLLAMA_BASE_URL="http://localhost:11434"
|
136 |
+
stderr_logfile=/var/log/open-webui.err.log
|
137 |
+
stdout_logfile=/var/log/open-webui.out.log
|
138 |
+
EOF
|
139 |
+
|
140 |
+
# Create a startup script for vLLM (runs on demand)
|
141 |
+
RUN cat > /usr/local/bin/start-vllm << 'EOF'
|
142 |
+
#!/bin/bash
|
143 |
+
python -m vllm.entrypoints.openai.api_server \
|
144 |
+
--model $1 \
|
145 |
+
--tensor-parallel-size ${CUDA_DEVICE_COUNT:-1} \
|
146 |
+
--gpu-memory-utilization 0.9 \
|
147 |
+
--max-model-len 32768 \
|
148 |
+
--host 0.0.0.0 \
|
149 |
+
--port 8000
|
150 |
+
EOF
|
151 |
+
RUN chmod +x /usr/local/bin/start-vllm
|
152 |
+
|
153 |
+
# Create multi-GPU training helper script
|
154 |
+
RUN cat > /usr/local/bin/train-multi-gpu << 'EOF'
|
155 |
+
#!/bin/bash
|
156 |
+
GPU_COUNT=$(nvidia-smi --query-gpu=name --format=csv,noheader | wc -l)
|
157 |
+
accelerate launch \
|
158 |
+
--num_processes $GPU_COUNT \
|
159 |
+
--num_machines 1 \
|
160 |
+
--mixed_precision bf16 \
|
161 |
+
--dynamo_backend no \
|
162 |
+
$@
|
163 |
+
EOF
|
164 |
+
RUN chmod +x /usr/local/bin/train-multi-gpu
|
165 |
+
|
166 |
+
# Create accelerate config
|
167 |
+
RUN cat > /workspace/accelerate_config.yaml << 'EOF'
|
168 |
+
compute_environment: LOCAL_MACHINE
|
169 |
+
debug: false
|
170 |
+
distributed_type: MULTI_GPU
|
171 |
+
downcast_bf16: 'no'
|
172 |
+
gpu_ids: all
|
173 |
+
machine_rank: 0
|
174 |
+
main_training_function: main
|
175 |
+
mixed_precision: bf16
|
176 |
+
num_machines: 1
|
177 |
+
num_processes: 8
|
178 |
+
rdzv_backend: static
|
179 |
+
same_network: true
|
180 |
+
tpu_env: []
|
181 |
+
tpu_use_cluster: false
|
182 |
+
tpu_use_sudo: false
|
183 |
+
use_cpu: false
|
184 |
+
EOF
|
185 |
+
|
186 |
+
# Create setup script
|
187 |
+
RUN cat > /workspace/setup.sh << 'EOF'
|
188 |
+
#!/bin/bash
|
189 |
+
echo "π RunPod ML Stack Setup"
|
190 |
+
echo "========================"
|
191 |
+
|
192 |
+
# Check GPU availability
|
193 |
+
echo -e "\nπ GPU Status:"
|
194 |
+
nvidia-smi --query-gpu=name,driver_version,memory.total --format=csv,noheader,nounits | nl -v 0
|
195 |
+
|
196 |
+
# Count GPUs
|
197 |
+
GPU_COUNT=$(nvidia-smi --query-gpu=name --format=csv,noheader | wc -l)
|
198 |
+
echo -e "\nβ
Found $GPU_COUNT GPU(s)"
|
199 |
+
|
200 |
+
# Update accelerate config with correct GPU count
|
201 |
+
sed -i "s/num_processes: 8/num_processes: $GPU_COUNT/g" /workspace/accelerate_config.yaml
|
202 |
+
|
203 |
+
# Pull a default model for Ollama if not exists
|
204 |
+
if ! ollama list | grep -q "llama3.2"; then
|
205 |
+
echo -e "\nπ₯ Pulling default Ollama model (llama3.2)..."
|
206 |
+
ollama pull llama3.2
|
207 |
+
fi
|
208 |
+
|
209 |
+
echo -e "\nπ Setup complete! Services available at:"
|
210 |
+
echo " VSCode: http://localhost:8080"
|
211 |
+
echo " Ollama: http://localhost:11434"
|
212 |
+
echo " Open-WebUI: http://localhost:3000"
|
213 |
+
echo " vLLM: http://localhost:8000 (start with: start-vllm <model>)"
|
214 |
+
EOF
|
215 |
+
RUN chmod +x /workspace/setup.sh
|
216 |
+
|
217 |
+
# Create example multi-GPU training script
|
218 |
+
RUN cat > /workspace/example_multi_gpu_train.py << 'EOF'
|
219 |
+
import torch
|
220 |
+
from accelerate import Accelerator
|
221 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
222 |
+
from datasets import load_dataset
|
223 |
+
from torch.optim import AdamW
|
224 |
+
from torch.utils.data import DataLoader
|
225 |
+
from tqdm import tqdm
|
226 |
+
|
227 |
+
def main():
|
228 |
+
# Initialize accelerator
|
229 |
+
accelerator = Accelerator()
|
230 |
+
|
231 |
+
# Setup
|
232 |
+
model_name = "meta-llama/Llama-2-7b-hf"
|
233 |
+
batch_size = 4
|
234 |
+
gradient_accumulation_steps = 4
|
235 |
+
learning_rate = 2e-5
|
236 |
+
num_epochs = 3
|
237 |
+
|
238 |
+
# Print GPU info
|
239 |
+
if accelerator.is_main_process:
|
240 |
+
print(f"π Training on {accelerator.num_processes} GPU(s)")
|
241 |
+
print(f"πΎ Total batch size: {batch_size * accelerator.num_processes * gradient_accumulation_steps}")
|
242 |
+
|
243 |
+
# Load model and tokenizer
|
244 |
+
model = AutoModelForCausalLM.from_pretrained(
|
245 |
+
model_name,
|
246 |
+
torch_dtype=torch.bfloat16,
|
247 |
+
use_cache=False,
|
248 |
+
)
|
249 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
250 |
+
tokenizer.pad_token = tokenizer.eos_token
|
251 |
+
|
252 |
+
# Load dataset
|
253 |
+
dataset = load_dataset("imdb", split="train[:1000]") # Small subset for demo
|
254 |
+
|
255 |
+
def tokenize_function(examples):
|
256 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
|
257 |
+
|
258 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
259 |
+
tokenized_dataset.set_format("torch", columns=["input_ids", "attention_mask"])
|
260 |
+
|
261 |
+
# Create DataLoader
|
262 |
+
dataloader = DataLoader(tokenized_dataset, batch_size=batch_size, shuffle=True)
|
263 |
+
|
264 |
+
# Optimizer
|
265 |
+
optimizer = AdamW(model.parameters(), lr=learning_rate)
|
266 |
+
|
267 |
+
# Prepare for distributed training
|
268 |
+
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
|
269 |
+
|
270 |
+
# Training loop
|
271 |
+
model.train()
|
272 |
+
for epoch in range(num_epochs):
|
273 |
+
if accelerator.is_main_process:
|
274 |
+
print(f"\nEpoch {epoch + 1}/{num_epochs}")
|
275 |
+
progress_bar = tqdm(total=len(dataloader), desc="Training")
|
276 |
+
|
277 |
+
for step, batch in enumerate(dataloader):
|
278 |
+
with accelerator.accumulate(model):
|
279 |
+
outputs = model(
|
280 |
+
input_ids=batch["input_ids"],
|
281 |
+
attention_mask=batch["attention_mask"],
|
282 |
+
labels=batch["input_ids"],
|
283 |
+
)
|
284 |
+
loss = outputs.loss
|
285 |
+
accelerator.backward(loss)
|
286 |
+
optimizer.step()
|
287 |
+
optimizer.zero_grad()
|
288 |
+
|
289 |
+
if accelerator.is_main_process:
|
290 |
+
progress_bar.update(1)
|
291 |
+
if step % 10 == 0:
|
292 |
+
progress_bar.set_postfix({"loss": loss.item()})
|
293 |
+
|
294 |
+
if accelerator.is_main_process:
|
295 |
+
progress_bar.close()
|
296 |
+
|
297 |
+
# Save model
|
298 |
+
if accelerator.is_main_process:
|
299 |
+
model.save_pretrained("./trained_model")
|
300 |
+
print("β
Training complete! Model saved to ./trained_model")
|
301 |
+
|
302 |
+
if __name__ == "__main__":
|
303 |
+
main()
|
304 |
+
EOF
|
305 |
+
|
306 |
+
# Create a helpful README
|
307 |
+
RUN cat > /workspace/README.md << 'EOF'
|
308 |
+
# RunPod Multi-GPU ML Stack π
|
309 |
+
|
310 |
+
## Quick Start
|
311 |
+
Run `/workspace/setup.sh` first to detect GPUs and pull models!
|
312 |
+
|
313 |
+
## Services:
|
314 |
+
- **VSCode**: http://localhost:8080
|
315 |
+
- **Ollama API**: http://localhost:11434
|
316 |
+
- **vLLM API**: http://localhost:8000 (start with: `start-vllm <model-name>`)
|
317 |
+
- **Open-WebUI**: http://localhost:3000
|
318 |
+
|
319 |
+
## Multi-GPU Commands:
|
320 |
+
- Training: `train-multi-gpu your_script.py`
|
321 |
+
- vLLM: `start-vllm meta-llama/Llama-2-7b-hf`
|
322 |
+
- Test multi-GPU: `python example_multi_gpu_train.py`
|
323 |
+
|
324 |
+
## RTX 5090 Support:
|
325 |
+
This image includes patched Unsloth and Flash Attention 2 for RTX 5090 compatibility.
|
326 |
+
|
327 |
+
## SSH Access:
|
328 |
+
Default password is `runpod`. Change it with `passwd`.
|
329 |
+
|
330 |
+
## Tips:
|
331 |
+
- Check GPU status: `nvidia-smi`
|
332 |
+
- Monitor GPUs: `nvtop`
|
333 |
+
- List Ollama models: `ollama list`
|
334 |
+
- Pull new models: `ollama pull <model>`
|
335 |
+
EOF
|
336 |
+
|
337 |
+
# Expose all necessary ports
|
338 |
+
EXPOSE 22 # SSH
|
339 |
+
EXPOSE 8080 # Code-server (VSCode)
|
340 |
+
EXPOSE 11434 # Ollama API
|
341 |
+
EXPOSE 8000 # vLLM API
|
342 |
+
EXPOSE 3000 # Open-WebUI
|
343 |
+
EXPOSE 6006 # TensorBoard
|
344 |
+
EXPOSE 8888 # Jupyter (if needed)
|
345 |
+
EXPOSE 5000 # Flask/FastAPI apps
|
346 |
+
EXPOSE 7860 # Gradio apps
|
347 |
+
EXPOSE 29500 # Distributed training master port
|
348 |
+
|
349 |
+
# Set working directory
|
350 |
+
WORKDIR /workspace
|
351 |
+
|
352 |
+
# Run setup on first start and then supervisor
|
353 |
+
CMD bash -c "/workspace/setup.sh && /usr/bin/supervisord -c /etc/supervisor/supervisord.conf"
|