#!/usr/bin/env python import pathlib import tempfile import cv2 import gradio as gr import numpy as np import PIL.Image import spaces import supervision as sv import torch import tqdm from transformers import AutoProcessor, RTDetrForObjectDetection, VitPoseForPoseEstimation DESCRIPTION = "# ViTPose" MAX_NUM_FRAMES = 300 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") person_detector_name = "PekingU/rtdetr_r50vd_coco_o365" person_image_processor = AutoProcessor.from_pretrained(person_detector_name) person_model = RTDetrForObjectDetection.from_pretrained(person_detector_name, device_map=device) pose_model_name = "usyd-community/vitpose-base-simple" pose_image_processor = AutoProcessor.from_pretrained(pose_model_name) pose_model = VitPoseForPoseEstimation.from_pretrained(pose_model_name, device_map=device) @spaces.GPU(duration=5) @torch.inference_mode() def process_image(image: PIL.Image.Image) -> tuple[PIL.Image.Image, list[dict]]: inputs = person_image_processor(images=image, return_tensors="pt").to(device) outputs = person_model(**inputs) results = person_image_processor.post_process_object_detection( outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=0.3 ) result = results[0] person_boxes_xyxy = result["boxes"][result["labels"] == 0] person_boxes_xyxy = person_boxes_xyxy.cpu().numpy() person_boxes = person_boxes_xyxy.copy() person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0] person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1] inputs = pose_image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device) if pose_model.config.backbone_config.num_experts > 1: dataset_index = torch.tensor([0] * len(inputs["pixel_values"])) dataset_index = dataset_index.to(inputs["pixel_values"].device) inputs["dataset_index"] = dataset_index outputs = pose_model(**inputs) pose_results = pose_image_processor.post_process_pose_estimation(outputs, boxes=[person_boxes]) image_pose_result = pose_results[0] human_readable_results = [] for i, person_pose in enumerate(image_pose_result): data = { "person_id": i, "bbox": person_pose["bbox"].numpy().tolist(), "keypoints": [], } for keypoint, label, score in zip( person_pose["keypoints"], person_pose["labels"], person_pose["scores"], strict=True ): keypoint_name = pose_model.config.id2label[label.item()] x, y = keypoint data["keypoints"].append({"name": keypoint_name, "x": x.item(), "y": y.item(), "score": score.item()}) human_readable_results.append(data) xy = [pose_result["keypoints"] for pose_result in image_pose_result] xy = torch.stack(xy).cpu().numpy() scores = [pose_result["scores"] for pose_result in image_pose_result] scores = torch.stack(scores).cpu().numpy() keypoints = sv.KeyPoints(xy=xy, confidence=scores) detections = sv.Detections(xyxy=person_boxes_xyxy) edge_annotator = sv.EdgeAnnotator(color=sv.Color.GREEN, thickness=1) vertex_annotator = sv.VertexAnnotator(color=sv.Color.RED, radius=2) bounding_box_annotator = sv.BoxAnnotator(color=sv.Color.WHITE, color_lookup=sv.ColorLookup.INDEX, thickness=1) annotated_frame = image.copy() annotated_frame = bounding_box_annotator.annotate(scene=image.copy(), detections=detections) annotated_frame = edge_annotator.annotate(scene=annotated_frame, key_points=keypoints) return vertex_annotator.annotate(scene=annotated_frame, key_points=keypoints), human_readable_results @spaces.GPU(duration=90) def process_video( video_path: str, progress: gr.Progress = gr.Progress(track_tqdm=True), ) -> str: cap = cv2.VideoCapture(video_path) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) fps = cap.get(cv2.CAP_PROP_FPS) num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) fourcc = cv2.VideoWriter_fourcc(*"mp4v") with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as out_file: writer = cv2.VideoWriter(out_file.name, fourcc, fps, (width, height)) for _ in tqdm.auto.tqdm(range(min(MAX_NUM_FRAMES, num_frames))): ok, frame = cap.read() if not ok: break rgb_frame = frame[:, :, ::-1] annotated_frame, _ = process_image(PIL.Image.fromarray(rgb_frame)) writer.write(np.asarray(annotated_frame)[:, :, ::-1]) writer.release() cap.release() return out_file.name with gr.Blocks(css_paths="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Tabs(): with gr.Tab("Image"): with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", type="pil") run_button_image = gr.Button() with gr.Column(): output_image = gr.Image(label="Output Image") output_json = gr.JSON(label="Output JSON") gr.Examples( examples=sorted(pathlib.Path("images").glob("*.jpg")), inputs=input_image, outputs=[output_image, output_json], fn=process_image, ) run_button_image.click( fn=process_image, inputs=input_image, outputs=[output_image, output_json], ) with gr.Tab("Video"): gr.Markdown(f"The input video will be truncated to {MAX_NUM_FRAMES} frames.") with gr.Row(): with gr.Column(): input_video = gr.Video(label="Input Video") run_button_video = gr.Button() with gr.Column(): output_video = gr.Video(label="Output Video") gr.Examples( examples=sorted(pathlib.Path("videos").glob("*.mp4")), inputs=input_video, outputs=output_video, fn=process_video, cache_examples=False, ) run_button_video.click( fn=process_video, inputs=input_video, outputs=output_video, ) if __name__ == "__main__": demo.queue(max_size=20).launch()