mcp-sentiment / app.py
mgbam's picture
Update app.py
84e7ad3 verified
import gradio as gr
import numpy as np
import sqlite3
import json
from PIL import Image, ImageDraw
import time
# ------ Tool Implementations ------
def get_recipe_by_ingredients(ingredients):
"""Find recipes based on available ingredients"""
return {
"recipes": [
{"name": "Vegetable Stir Fry", "time": 20, "difficulty": "Easy"},
{"name": "Pasta Primavera", "time": 30, "difficulty": "Medium"}
]
}
def get_recipe_image(recipe_name):
"""Generate an image of the finished recipe"""
# Create placeholder image
img = Image.new('RGB', (300, 200), color=(73, 109, 137))
d = ImageDraw.Draw(img)
d.text((10,10), f"Image of: {recipe_name}", fill=(255,255,0))
return img
def convert_measurements(amount, from_unit, to_unit):
"""Convert cooking measurements between units"""
conversions = {
("tbsp", "tsp"): lambda x: x * 3,
("cups", "ml"): lambda x: x * 240,
("oz", "g"): lambda x: x * 28.35
}
conversion_key = (from_unit.lower(), to_unit.lower())
if conversion_key in conversions:
result = conversions[conversion_key](amount)
return {"result": round(result, 2), "unit": to_unit}
return {"error": "Conversion not supported"}
# ------ Recipe Database ------
def init_recipe_db():
conn = sqlite3.connect(':memory:')
c = conn.cursor()
c.execute('''CREATE TABLE recipes
(id INTEGER PRIMARY KEY, name TEXT, ingredients TEXT, instructions TEXT, prep_time INT)''')
recipes = [
("Classic Pancakes", json.dumps(["flour", "eggs", "milk", "baking powder"]),
"1. Mix dry ingredients\n2. Add wet ingredients\n3. Cook on griddle", 15),
("Tomato Soup", json.dumps(["tomatoes", "onion", "garlic", "vegetable stock"]),
"1. Sauté onions\n2. Add tomatoes\n3. Simmer and blend", 30),
("Chocolate Cake", json.dumps(["flour", "sugar", "cocoa", "eggs", "milk"]),
"1. Mix dry ingredients\n2. Add wet ingredients\n3. Bake at 350°F", 45)
]
c.executemany("INSERT INTO recipes (name, ingredients, instructions, prep_time) VALUES (?,?,?,?)", recipes)
conn.commit()
return conn
# ------ Agent Logic ------
def process_query(query, db_conn):
"""Process user query"""
print(f"Processing query: {query}")
# Simple intent recognition
if "recipe" in query.lower() or "make" in query.lower() or "cook" in query.lower():
ingredients = [word for word in ["eggs", "flour", "milk", "tomatoes"] if word in query.lower()]
if not ingredients:
ingredients = ["eggs", "flour"]
return {
"type": "recipes",
"data": get_recipe_by_ingredients(ingredients)
}
elif "image" in query.lower() or "show" in query.lower():
recipe_name = next((r for r in ["pancakes", "soup", "cake"] if r in query.lower()), "pancakes")
return {
"type": "image",
"data": get_recipe_image(recipe_name)
}
elif "convert" in query.lower():
words = query.split()
try:
amount = float(words[words.index("convert")+1])
from_unit = words[words.index("convert")+2]
to_unit = words[words.index("to")+1]
except:
amount = 2
from_unit = "cups"
to_unit = "ml"
return {
"type": "conversion",
"data": convert_measurements(amount, from_unit, to_unit)
}
else:
c = db_conn.cursor()
c.execute("SELECT * FROM recipes WHERE name LIKE ?", (f"%{query}%",))
return {
"type": "db_recipes",
"data": c.fetchall()
}
# ------ Gradio Interface ------
def process_command(query):
"""Process text command"""
# Initialize database on first run
if not hasattr(process_command, "db_conn"):
process_command.db_conn = init_recipe_db()
# Process query
result = process_query(query, process_command.db_conn)
# Generate response
response_text = ""
image = None
if result["type"] == "recipes":
recipes = result["data"]["recipes"]
response_text = f"Found {len(recipes)} recipes:\n"
for recipe in recipes:
response_text += f"- {recipe['name']} ({recipe['time']} mins)\n"
elif result["type"] == "image":
image = result["data"]
response_text = "Here's an image of the recipe!"
elif result["type"] == "conversion":
conv = result["data"]
response_text = f"Result: {conv.get('result', '?')} {conv.get('unit', '')}" + \
(f"\nError: {conv['error']}" if "error" in conv else "")
elif result["type"] == "db_recipes":
recipes = result["data"]
response_text = f"Found {len(recipes)} recipes:\n" if recipes else "No recipes found."
for recipe in recipes:
response_text += f"- {recipe[1]} ({recipe[4]} mins)\n"
# Return results
return response_text, image
# ------ Create Gradio Interface ------
with gr.Blocks(title="Culinary Assistant") as demo:
gr.Markdown("# 🧑‍🍳 MCP-Powered Culinary Assistant")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(label="Ask about recipes, conversions, or cooking tips")
submit_btn = gr.Button("Get Answer", variant="primary")
with gr.Column():
text_output = gr.Textbox(label="Assistant Response", interactive=False)
image_output = gr.Image(label="Recipe Image", interactive=False)
submit_btn.click(
fn=process_command,
inputs=[text_input],
outputs=[text_output, image_output]
)
gr.Examples(
examples=[
["What can I make with eggs and flour?"],
["Show me tomato soup"],
["Convert 2 cups to milliliters"],
["Find chocolate cake recipes"]
],
inputs=[text_input],
outputs=[text_output, image_output],
fn=process_command,
cache_examples=True,
label="Example Queries"
)
if __name__ == "__main__":
demo.launch()