Spaces:
Sleeping
Sleeping
# MCP-Powered Culinary Voice Assistant | |
# Hugging Face Space Implementation | |
import gradio as gr | |
import numpy as np | |
from mcp.server.fastmcp import FastMCP | |
from agents import Agent, trace | |
from agents.mcp import MCPServerSse, MCPServerStdio | |
from agents.voice import VoicePipeline, TTSModelSettings, AudioInput | |
import sqlite3 | |
import json | |
import requests | |
from PIL import Image | |
import io | |
# ------ Custom MCP Cooking Tools Server ------ | |
mcp = FastMCP("Culinary Tools Server") | |
def get_recipe_by_ingredients(ingredients: list) -> dict: | |
"""Find recipes based on available ingredients""" | |
print(f"[Culinary Server] Finding recipes with: {', '.join(ingredients)}") | |
# In a real implementation, this would call a recipe API | |
return { | |
"recipes": [ | |
{"name": "Vegetable Stir Fry", "time": 20, "difficulty": "Easy"}, | |
{"name": "Pasta Primavera", "time": 30, "difficulty": "Medium"} | |
] | |
} | |
def get_recipe_image(recipe_name: str) -> str: | |
"""Generate an image of the finished recipe""" | |
print(f"[Culinary Server] Generating image for: {recipe_name}") | |
# This would call DALL-E or Stable Diffusion in production | |
return "https://example.com/recipe-image.jpg" | |
def convert_measurements(amount: float, from_unit: str, to_unit: str) -> dict: | |
"""Convert cooking measurements between units""" | |
print(f"[Culinary Server] Converting {amount} {from_unit} to {to_unit}") | |
# Simple conversion logic - real implementation would handle more units | |
conversions = { | |
("tbsp", "tsp"): lambda x: x * 3, | |
("cups", "ml"): lambda x: x * 240, | |
("oz", "g"): lambda x: x * 28.35 | |
} | |
conversion_key = (from_unit.lower(), to_unit.lower()) | |
if conversion_key in conversions: | |
return {"result": conversions[conversion_key](amount), "unit": to_unit} | |
return {"error": "Conversion not supported"} | |
# ------ Recipe Database (SQLite) ------ | |
def init_recipe_db(): | |
conn = sqlite3.connect('file:recipes.db?mode=memory&cache=shared', uri=True) | |
c = conn.cursor() | |
c.execute('''CREATE TABLE IF NOT EXISTS recipes | |
(id INTEGER PRIMARY KEY, name TEXT, ingredients TEXT, instructions TEXT, prep_time INT)''') | |
# Sample recipes | |
recipes = [ | |
("Classic Pancakes", "['flour', 'eggs', 'milk', 'baking powder']", | |
"1. Mix dry ingredients\n2. Add wet ingredients\n3. Cook on griddle", 15), | |
("Tomato Soup", "['tomatoes', 'onion', 'garlic', 'vegetable stock']", | |
"1. Sauté onions\n2. Add tomatoes\n3. Simmer and blend", 30) | |
] | |
c.executemany("INSERT INTO recipes (name, ingredients, instructions, prep_time) VALUES (?,?,?,?)", recipes) | |
conn.commit() | |
return conn | |
# ------ Voice Assistant Setup ------ | |
def create_culinary_agent(mcp_servers): | |
"""Create the culinary assistant agent""" | |
culinary_agent = Agent( | |
name="ChefAssistant", | |
instructions=""" | |
You are a professional chef assistant. Help users with cooking tasks: | |
1. Use get_recipe_by_ingredients when users have specific ingredients | |
2. Use get_recipe_details for known recipes | |
3. Use convert_measurements for unit conversions | |
4. Use get_recipe_image when the user asks to see a dish | |
5. Keep responses concise and practical for kitchen use | |
6. Use a warm, encouraging tone suitable for cooking | |
""", | |
mcp_servers=mcp_servers, | |
model="gpt-4.1-mini", | |
) | |
return culinary_agent | |
# ------ Gradio Interface ------ | |
def process_voice_command(audio, state): | |
"""Process voice command through the agent system""" | |
sr, audio_data = audio | |
audio_array = (audio_data / np.iinfo(audio_data.dtype).max).astype(np.float32) | |
# Initialize on first run | |
if state is None: | |
init_recipe_db() | |
state = { | |
"mcp_servers": [], | |
"agent": None, | |
"voice_pipeline": VoicePipeline( | |
workflow=None, | |
config=VoicePipelineConfig( | |
tts_settings=TTSModelSettings( | |
instructions="Warm, encouraging chef voice" | |
) | |
) | |
) | |
} | |
# Start MCP servers | |
with MCPServerSse( | |
name="Culinary Tools", | |
params={"url": "http://localhost:8000/sse"}, | |
client_session_timeout_seconds=15, | |
) as culinary_server: | |
with MCPServerStdio( | |
params={"command": "uvx", "args": ["mcp-server-sqlite", "--db-path", "file:recipes.db?mode=memory&cache=shared"]}, | |
) as db_server: | |
state["mcp_servers"] = [culinary_server, db_server] | |
state["agent"] = create_culinary_agent(state["mcp_servers"]) | |
# Process audio through agent | |
audio_input = AudioInput(buffer=audio_array, sample_rate=sr) | |
response = state["voice_pipeline"].run(state["agent"], audio_input) | |
# For demo purposes, return mock response | |
return ( | |
"https://example.com/response.wav", | |
"I found 3 recipes for your ingredients! Vegetable Stir Fry (20 mins) and Pasta Primavera (30 mins).", | |
"https://example.com/stir-fry.jpg", | |
state | |
) | |
# ------ Hugging Face Space UI ------ | |
with gr.Blocks(title="MCP Culinary Voice Assistant") as demo: | |
state = gr.State(value=None) | |
with gr.Row(): | |
gr.Markdown("# 🧑🍳 MCP-Powered Culinary Voice Assistant") | |
with gr.Row(): | |
audio_input = gr.Audio(source="microphone", type="numpy", label="Speak to Chef Assistant") | |
audio_output = gr.Audio(label="Assistant Response", interactive=False) | |
with gr.Row(): | |
text_output = gr.Textbox(label="Transcription", interactive=False) | |
image_output = gr.Image(label="Recipe Image", interactive=False) | |
with gr.Row(): | |
submit_btn = gr.Button("Process Command", variant="primary") | |
submit_btn.click( | |
fn=process_voice_command, | |
inputs=[audio_input, state], | |
outputs=[audio_output, text_output, image_output, state] | |
) | |
gr.Examples( | |
examples=[ | |
["What can I make with eggs and flour?", "", ""], | |
["Show me how tomato soup looks", "", ""], | |
["Convert 2 cups to milliliters", "", ""] | |
], | |
inputs=[text_output], | |
label="Example Queries" | |
) | |
if __name__ == "__main__": | |
# Start MCP server in background thread | |
import threading | |
server_thread = threading.Thread(target=mcp.run, kwargs={"transport": "sse"}) | |
server_thread.daemon = True | |
server_thread.start() | |
# Launch Gradio interface | |
demo.launch(server_name="0.0.0.0", server_port=7860) |