File size: 8,437 Bytes
48f06a6 e0b040a 4f8a74b 13a7675 93f08f4 dad8300 e0b040a dad8300 e0b040a dad8300 e0b040a 2b7139c e0b040a 2b7139c e0b040a dad8300 e0b040a c558be9 e0b040a dad8300 e0b040a 2b7139c e0b040a dad8300 e0b040a 1bd1ac4 e0b040a dad8300 e0b040a 1bd1ac4 e0b040a 2b7139c e0b040a 1bd1ac4 e0b040a c558be9 f7cf3be 2deb7a7 e0b040a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
"""
app.py – Gradio front‑end for “AnyCoder AI” (a.k.a. Shasha AI)
UI : single‑page, 3‑column layout
Logo : assets/logo.png (120 px wide, centred)
SDK : Gradio 5.38.2 (no `height=` arg on gr.Code)
"""
from __future__ import annotations
import gradio as gr
from typing import List, Tuple, Dict, Optional, Any
# ── local helpers ----------------------------------------------------------
from constants import ( # all kept in one place
SEARCH_START, DIVIDER, REPLACE_END,
HTML_SYSTEM_PROMPT, HTML_SYSTEM_PROMPT_WITH_SEARCH,
TRANSFORMERS_JS_SYSTEM_PROMPT, TRANSFORMERS_JS_SYSTEM_PROMPT_WITH_SEARCH,
GENERIC_SYSTEM_PROMPT, GENERIC_SYSTEM_PROMPT_WITH_SEARCH,
SYSTEM_PROMPTS, FollowUpSystemPrompt,
TransformersJSFollowUpSystemPrompt,
AVAILABLE_MODELS, DEMO_LIST,
get_gradio_language,
)
from hf_client import get_inference_client
from tavily_search import enhance_query_with_search
from utils import (
extract_text_from_file, extract_website_content,
history_to_messages, history_to_chatbot_messages,
remove_code_block, parse_transformers_js_output, format_transformers_js_output,
apply_search_replace_changes, apply_transformers_js_search_replace_changes,
)
from deploy import send_to_sandbox
from search_replace import SEARCH_START as SR_START # just to avoid name clash
# (optional import)
# ── type aliases -----------------------------------------------------------
History = List[Tuple[str, str]]
ModelInfo = Dict[str, str]
# ── generation core --------------------------------------------------------
def generate_code(
prompt: str,
file_path: Optional[str],
website_url: Optional[str],
model: ModelInfo,
language: str,
enable_search: bool,
history: Optional[History],
) -> Tuple[str, History, str, List[Dict[str, str]]]:
history = history or []
prompt = prompt or ""
# 1. choose system prompt ------------------------------------------------
if history:
# modification request
if language == "transformers.js":
system_prompt = TransformersJSFollowUpSystemPrompt
else:
system_prompt = FollowUpSystemPrompt
else:
# fresh generation
if language == "html":
system_prompt = HTML_SYSTEM_PROMPT_WITH_SEARCH if enable_search else HTML_SYSTEM_PROMPT
elif language == "transformers.js":
system_prompt = TRANSFORMERS_JS_SYSTEM_PROMPT_WITH_SEARCH if enable_search else TRANSFORMERS_JS_SYSTEM_PROMPT
else:
system_prompt = (
GENERIC_SYSTEM_PROMPT_WITH_SEARCH.format(language=language)
if enable_search else GENERIC_SYSTEM_PROMPT.format(language=language)
)
messages = history_to_messages(history, system_prompt)
# 2. augment prompt with file / website ---------------------------------
if file_path:
file_txt = extract_text_from_file(file_path)[:5000]
prompt += f"\n\n[Reference file]\n{file_txt}"
if website_url:
site_ctx = extract_website_content(website_url.strip())
prompt += f"\n\n[Website]\n{site_ctx[:8000]}"
# 3. optional web‑search enrichment --------------------------------------
user_query = enhance_query_with_search(prompt, enable_search)
messages.append({"role": "user", "content": user_query})
# 4. call model -----------------------------------------------------------
client = get_inference_client(model["id"])
try:
resp = client.chat.completions.create(
model=model["id"],
messages=messages,
max_tokens=16_000,
temperature=0.1,
)
answer = resp.choices[0].message.content
except Exception as e:
err = f"❌ **Error:**\n```\n{e}\n```"
history.append((prompt, err))
return "", history, "", history_to_chatbot_messages(history)
# 5. post‑processing ------------------------------------------------------
if language == "transformers.js":
files = parse_transformers_js_output(answer)
code = format_transformers_js_output(files)
preview = send_to_sandbox(files["index.html"]) if files["index.html"] else ""
else:
clean = remove_code_block(answer)
if history and not history[-1][1].startswith("❌"):
clean = apply_search_replace_changes(history[-1][1], clean)
code = clean
preview = send_to_sandbox(code) if language == "html" else ""
history.append((prompt, code))
chat_msgs = history_to_chatbot_messages(history)
return code, history, preview, chat_msgs
# ── UI ---------------------------------------------------------------------
THEME = gr.themes.Base(primary_hue="indigo", font="Inter")
with gr.Blocks(theme=THEME, title="AnyCoder AI") as demo:
state_hist = gr.State([]) # History list
state_model = gr.State(AVAILABLE_MODELS[0])
# ––– Header with logo –––
with gr.Row():
gr.HTML(
'<div style="text-align:center; margin:1.2rem 0;">'
'<img src="assets/logo.png" alt="AnyCoder logo" style="width:120px;"><br>'
'<h1 style="margin:0.4rem 0 0; font-size:1.9rem;">AnyCoder AI</h1>'
'<p style="color:#555;">Your AI partner for generating, modifying & understanding code.</p>'
'</div>'
)
with gr.Row():
# ── Sidebar (column‑1) ───────────────────────────────────────────
with gr.Column(scale=1):
gr.Markdown("### 1 · Select Model")
dd_model = gr.Dropdown(
[m["name"] for m in AVAILABLE_MODELS],
value=AVAILABLE_MODELS[0]["name"],
label="AI Model",
)
gr.Markdown("### 2 · Provide Context")
with gr.Tabs():
with gr.Tab("Prompt"):
tb_prompt = gr.Textbox(lines=6, placeholder="Describe what you want to build…")
with gr.Tab("File"):
fi_file = gr.File()
with gr.Tab("Website"):
tb_url = gr.Textbox(placeholder="https://example.com")
gr.Markdown("### 3 · Configure Output")
dd_lang = gr.Dropdown(
GRADIO_SUPPORTED_LANGUAGES[:-1], # drop trailing None
value="html",
label="Target Language",
)
cb_search = gr.Checkbox(label="Enable Tavily Web Search")
with gr.Row():
btn_clear = gr.Button("Clear Session", variant="secondary")
btn_gen = gr.Button("Generate Code", variant="primary")
# ── Output / preview (column‑2) ──────────────────────────────────
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("Code"):
code_out = gr.Code(language="html", lines=25, label="Generated code")
with gr.Tab("Preview"):
html_prev = gr.HTML()
with gr.Tab("History"):
chat_out = gr.Chatbot(type="messages", height=400)
# ––– Quick‑start buttons –––
gr.Markdown("#### Quick Start Examples")
with gr.Row():
for demo in DEMO_LIST[:6]:
gr.Button(demo["title"], size="sm").click(
lambda d=demo: d["description"], outputs=tb_prompt
)
# ── Callbacks -----------------------------------------------------------
def _select_model(name: str) -> ModelInfo:
return next((m for m in AVAILABLE_MODELS if m["name"] == name), AVAILABLE_MODELS[0])
dd_model.change(_select_model, dd_model, state_model)
btn_gen.click(
generate_code,
inputs=[tb_prompt, fi_file, tb_url,
state_model, dd_lang, cb_search, state_hist],
outputs=[code_out, state_hist, html_prev, chat_out],
)
btn_clear.click(
lambda: ("", None, "", [], [], "", ""),
outputs=[tb_prompt, fi_file, tb_url, state_hist, chat_out, code_out, html_prev],
queue=False,
)
if __name__ == "__main__":
demo.launch()
|