Spaces:
Running
on
Zero
Running
on
Zero
harmony
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
from transformers import pipeline, TextIteratorStreamer
|
2 |
-
import torch
|
3 |
from threading import Thread
|
4 |
import gradio as gr
|
5 |
import spaces
|
@@ -10,8 +9,29 @@ from openai_harmony import (
|
|
10 |
Role,
|
11 |
Message,
|
12 |
Conversation,
|
|
|
|
|
|
|
13 |
)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
model_id = "openai/gpt-oss-20b"
|
16 |
|
17 |
pipe = pipeline(
|
@@ -31,42 +51,23 @@ def format_conversation_history(chat_history):
|
|
31 |
content = content[0]["text"] if content and "text" in content[0] else str(content)
|
32 |
messages.append({"role": role, "content": content})
|
33 |
return messages
|
34 |
-
|
35 |
-
def build_harmony_conversation_from_messages(messages):
|
36 |
-
harmony_messages = []
|
37 |
-
for m in messages:
|
38 |
-
role = m["role"].lower()
|
39 |
-
content = m["content"]
|
40 |
-
if role == "system":
|
41 |
-
harmony_messages.append(
|
42 |
-
Message.from_role_and_content(
|
43 |
-
Role.SYSTEM,
|
44 |
-
content,
|
45 |
-
)
|
46 |
-
)
|
47 |
-
elif role == "user":
|
48 |
-
harmony_messages.append(
|
49 |
-
Message.from_role_and_content(
|
50 |
-
Role.USER,
|
51 |
-
content,
|
52 |
-
)
|
53 |
-
)
|
54 |
-
elif role == "assistant":
|
55 |
-
harmony_messages.append(
|
56 |
-
Message.from_role_and_content(
|
57 |
-
Role.ASSISTANT,
|
58 |
-
content,
|
59 |
-
)
|
60 |
-
)
|
61 |
-
return Conversation.from_messages(harmony_messages)
|
62 |
-
|
63 |
@spaces.GPU()
|
64 |
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
|
65 |
new_message = {"role": "user", "content": input_data}
|
66 |
-
system_message = [{"role": "system", "content": system_prompt}] if system_prompt else []
|
67 |
processed_history = format_conversation_history(chat_history)
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
prompt_tokens = enc.render_conversation_for_completion(conversation, Role.ASSISTANT)
|
71 |
prompt_text = pipe.tokenizer.decode(prompt_tokens, skip_special_tokens=False)
|
72 |
|
@@ -85,21 +86,20 @@ def generate_response(input_data, chat_history, max_new_tokens, system_prompt, t
|
|
85 |
thread = Thread(target=pipe, args=(prompt_text,), kwargs=generation_kwargs)
|
86 |
thread.start()
|
87 |
|
|
|
88 |
thinking = ""
|
89 |
final = ""
|
90 |
started_final = False
|
91 |
for chunk in streamer:
|
92 |
if not started_final:
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
final +=
|
97 |
started_final = True
|
98 |
-
else:
|
99 |
-
thinking += chunk
|
100 |
else:
|
101 |
final += chunk
|
102 |
-
clean_thinking =
|
103 |
clean_final = final.strip()
|
104 |
formatted = f"<details open><summary>Click to view Thinking Process</summary>\n\n{clean_thinking}\n\n</details>\n\n{clean_final}"
|
105 |
yield formatted
|
|
|
1 |
from transformers import pipeline, TextIteratorStreamer
|
|
|
2 |
from threading import Thread
|
3 |
import gradio as gr
|
4 |
import spaces
|
|
|
9 |
Role,
|
10 |
Message,
|
11 |
Conversation,
|
12 |
+
SystemContent,
|
13 |
+
DeveloperContent,
|
14 |
+
ReasoningEffort,
|
15 |
)
|
16 |
|
17 |
+
# regex config
|
18 |
+
RE_REASONING = re.compile(r'(?i)Reasoning:\s*(low|medium|high)')
|
19 |
+
RE_FINAL_MARKER = re.compile(r'(?i)assistantfinal')
|
20 |
+
RE_ANALYSIS_PREFIX = re.compile(r'(?i)^analysis\s*')
|
21 |
+
|
22 |
+
# I think for system prompt reasoning level OpenAI mentioned you should do parsing so here's
|
23 |
+
def parse_reasoning_and_instructions(system_prompt: str):
|
24 |
+
instructions = system_prompt or "You are a helpful assistant."
|
25 |
+
match = RE_REASONING.search(instructions)
|
26 |
+
effort_key = match.group(1).lower() if match else 'medium'
|
27 |
+
effort = {
|
28 |
+
'low': ReasoningEffort.LOW,
|
29 |
+
'medium': ReasoningEffort.MEDIUM,
|
30 |
+
'high': ReasoningEffort.HIGH,
|
31 |
+
}.get(effort_key, ReasoningEffort.MEDIUM)
|
32 |
+
cleaned_instructions = RE_REASONING.sub('', instructions).strip()
|
33 |
+
return effort, cleaned_instructions
|
34 |
+
|
35 |
model_id = "openai/gpt-oss-20b"
|
36 |
|
37 |
pipe = pipeline(
|
|
|
51 |
content = content[0]["text"] if content and "text" in content[0] else str(content)
|
52 |
messages.append({"role": role, "content": content})
|
53 |
return messages
|
54 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
@spaces.GPU()
|
56 |
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
|
57 |
new_message = {"role": "user", "content": input_data}
|
|
|
58 |
processed_history = format_conversation_history(chat_history)
|
59 |
+
effort, instructions = parse_reasoning_and_instructions(system_prompt)
|
60 |
+
system_content = SystemContent.new().with_reasoning_effort(effort)
|
61 |
+
developer_content = DeveloperContent.new().with_instructions(instructions)
|
62 |
+
harmony_messages = [
|
63 |
+
Message.from_role_and_content(Role.SYSTEM, system_content),
|
64 |
+
Message.from_role_and_content(Role.DEVELOPER, developer_content),
|
65 |
+
]
|
66 |
+
|
67 |
+
for m in processed_history + [new_message]:
|
68 |
+
role = Role.USER if m["role"] == "user" else Role.ASSISTANT
|
69 |
+
harmony_messages.append(Message.from_role_and_content(role, m["content"]))
|
70 |
+
conversation = Conversation.from_messages(harmony_messages)
|
71 |
prompt_tokens = enc.render_conversation_for_completion(conversation, Role.ASSISTANT)
|
72 |
prompt_text = pipe.tokenizer.decode(prompt_tokens, skip_special_tokens=False)
|
73 |
|
|
|
86 |
thread = Thread(target=pipe, args=(prompt_text,), kwargs=generation_kwargs)
|
87 |
thread.start()
|
88 |
|
89 |
+
# parsing thinking
|
90 |
thinking = ""
|
91 |
final = ""
|
92 |
started_final = False
|
93 |
for chunk in streamer:
|
94 |
if not started_final:
|
95 |
+
parts = RE_FINAL_MARKER.split(chunk, maxsplit=1)
|
96 |
+
thinking += parts[0]
|
97 |
+
if len(parts) > 1:
|
98 |
+
final += parts[-1]
|
99 |
started_final = True
|
|
|
|
|
100 |
else:
|
101 |
final += chunk
|
102 |
+
clean_thinking = RE_ANALYSIS_PREFIX.sub('', thinking).strip()
|
103 |
clean_final = final.strip()
|
104 |
formatted = f"<details open><summary>Click to view Thinking Process</summary>\n\n{clean_thinking}\n\n</details>\n\n{clean_final}"
|
105 |
yield formatted
|