File size: 5,113 Bytes
a4b21e5
 
 
 
 
6ce8b1e
ae0ab06
 
 
 
 
 
 
a4b21e5
 
 
 
 
 
 
 
ae0ab06
a4b21e5
ae0ab06
a4b21e5
 
 
 
 
 
 
 
 
ae0ab06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba54a13
 
a4b21e5
 
 
 
 
ae0ab06
 
 
 
a4b21e5
ae0ab06
a4b21e5
 
 
 
 
 
6ce8b1e
ae0ab06
 
a4b21e5
ae0ab06
a4b21e5
ae0ab06
ba54a13
 
 
6ce8b1e
ba54a13
 
ae0ab06
ba54a13
 
 
 
 
6ce8b1e
ba54a13
ae0ab06
ba54a13
 
 
a4b21e5
 
 
 
14d377a
a4b21e5
 
 
 
 
 
 
 
 
 
 
 
6ce8b1e
2870fe9
ae0ab06
 
a4b21e5
 
 
c438893
bdddd23
a4b21e5
 
 
 
 
 
 
 
 
 
 
ae0ab06
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from transformers import pipeline, TextIteratorStreamer
import torch
from threading import Thread
import gradio as gr
import spaces
import re
from openai_harmony import (
    load_harmony_encoding,
    HarmonyEncodingName,
    Role,
    Message,
    Conversation,
)

model_id = "openai/gpt-oss-20b"

pipe = pipeline(
    "text-generation",
    model=model_id,
    torch_dtype="auto",
    device_map="auto",
    trust_remote_code=True,
)
enc = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS)
def format_conversation_history(chat_history):
    messages = []
    for item in chat_history:
        role = item["role"]
        content = item["content"]
        if isinstance(content, list):
            content = content[0]["text"] if content and "text" in content[0] else str(content)
        messages.append({"role": role, "content": content})
    return messages
#OpenAI's harmony format
def build_harmony_conversation_from_messages(messages):
    harmony_messages = []
    for m in messages:
        role = m["role"].lower()
        content = m["content"]
        if role == "system":
            harmony_messages.append(
                Message.from_role_and_content(
                    Role.SYSTEM,
                    content,
                )
            )
        elif role == "user":
            harmony_messages.append(
                Message.from_role_and_content(
                    Role.USER,
                    content,
                )
            )
        elif role == "assistant":
            harmony_messages.append(
                Message.from_role_and_content(
                    Role.ASSISTANT,
                    content,
                )
            )
    return Conversation.from_messages(harmony_messages)
    
@spaces.GPU()
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
    new_message = {"role": "user", "content": input_data}
    system_message = [{"role": "system", "content": system_prompt}] if system_prompt else []
    processed_history = format_conversation_history(chat_history)
    messages = system_message + processed_history + [new_message]
    conversation = build_harmony_conversation_from_messages(messages)
    prompt_tokens = enc.render_conversation_for_completion(conversation, Role.ASSISTANT)
    prompt_text = pipe.tokenizer.decode(prompt_tokens, skip_special_tokens=False)

    streamer = TextIteratorStreamer(pipe.tokenizer, skip_prompt=True, skip_special_tokens=True)

    generation_kwargs = {
        "max_new_tokens": max_new_tokens,
        "do_sample": True,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
        "streamer": streamer,
        "return_full_text": False,
    }
    thread = Thread(target=pipe, args=(prompt_text,), kwargs=generation_kwargs)
    thread.start()

    thinking = ""
    final = ""
    started_final = False
    for chunk in streamer:
        if not started_final:
            if "assistantfinal" in chunk.lower():
                split_parts = re.split(r'(?i)assistantfinal', chunk, maxsplit=1)
                thinking += split_parts[0]
                final += split_parts[1]
                started_final = True
            else:
                thinking += chunk
        else:
            final += chunk
        clean_thinking = re.sub(r'^analysis\s*', '', thinking, flags=re.I).strip()
        clean_final = final.strip()
        formatted = f"<details open><summary>Click to view Thinking Process</summary>\n\n{clean_thinking}\n\n</details>\n\n{clean_final}"
        yield formatted

demo = gr.ChatInterface(
    fn=generate_response,
    additional_inputs=[
        gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048),
        gr.Textbox(
            label="System Prompt",
            value="You are a helpful assistant. Reasoning: medium",
            lines=4,
            placeholder="Change system prompt"
        ),
        gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
        gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50),
        gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0)
    ],
    examples=[
        [{"text": "Explain Newton laws clearly and concisely"}],
        [{"text": "What are the benefits of open weight AI models"}],
        [{"text": "Write a Python function to calculate the Fibonacci sequence"}],

    ],
    cache_examples=False,
    type="messages",
    description="""# gpt-oss-20b Demo
Give it a couple of seconds to start. You can adjust reasoning level in the system prompt like "Reasoning: high." Click to view thinking process (default is on).""",
    fill_height=True,
    textbox=gr.Textbox(
        label="Query Input",
        placeholder="Type your prompt"
    ),
    stop_btn="Stop Generation",
    multimodal=False,
    theme=gr.themes.Soft()
)

if __name__ == "__main__":
    demo.launch()