Spaces:
Runtime error
Runtime error
2023-11-27-03-48-27
Browse files
app.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
|
4 |
+
os.system("pip install torch")
|
5 |
+
os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'")
|
6 |
+
os.system("pip install layoutparser")
|
7 |
+
os.system("pip install layoutparser[layoutmodels]")
|
8 |
+
os.system("pip install layoutparser[ocr]")
|
9 |
+
os.system("pip install Pillow==9.4.0")
|
10 |
+
os.system("pip install requests")
|
11 |
+
|
12 |
+
import gradio as gr
|
13 |
+
import layoutparser as lp
|
14 |
+
from PIL import Image
|
15 |
+
from urllib.parse import urlparse
|
16 |
+
import requests
|
17 |
+
|
18 |
+
def get_RGB_image(image_or_path: str | Image.Image) -> bytes:
|
19 |
+
if isinstance(image_or_path, str):
|
20 |
+
if urlparse(image_or_path).scheme in ["http", "https"]: # Online
|
21 |
+
image_or_path = Image.open(
|
22 |
+
requests.get(image_or_path, stream=True).raw)
|
23 |
+
else: # Local
|
24 |
+
image_or_path = Image.open(image_or_path)
|
25 |
+
return image_or_path.convert("RGB")
|
26 |
+
|
27 |
+
def inference_factory(config_path: str, model_path: str, label_map: dict, color_map: dict, examples=[], launch=True):
|
28 |
+
import traceback
|
29 |
+
model: lp.elements.layout.Layout = lp.Detectron2LayoutModel(
|
30 |
+
config_path=config_path,
|
31 |
+
model_path=model_path,
|
32 |
+
# extra_config = ["MODEL.ROI_HEADS.SCORE_THRESH_TEST", 0.8],
|
33 |
+
label_map=label_map)
|
34 |
+
default_threshold = 0.8
|
35 |
+
cache = {
|
36 |
+
'annotated_image': None,
|
37 |
+
'message': None,
|
38 |
+
'threshold': default_threshold,
|
39 |
+
'image': None,
|
40 |
+
'predicted': None
|
41 |
+
}
|
42 |
+
|
43 |
+
def truncate(f, n):
|
44 |
+
return int(f * 10 ** n) / 10 ** n
|
45 |
+
|
46 |
+
def fn(image: Image.Image, threshold: float = default_threshold, just_image=True):
|
47 |
+
try:
|
48 |
+
nonlocal cache
|
49 |
+
if cache['image'] == image and cache['threshold'] == threshold and bool(cache['annotated_image']):
|
50 |
+
return [cache['annotated_image'], cache['message'], cache['threshold']]
|
51 |
+
layout_predicted = cache['predicted'] if cache['image'] == image else model.detect(
|
52 |
+
image)
|
53 |
+
threshold = truncate(
|
54 |
+
min([max([block.score for block in layout_predicted] + [0])] + [threshold]), 1)
|
55 |
+
blocks: List[lp.elements.layout_elements.TextBlock] = [block.set(
|
56 |
+
id=f'{block.type}/{block.score:.2f}') for block in layout_predicted if block.score >= threshold]
|
57 |
+
annotated_image = lp.draw_box(
|
58 |
+
image,
|
59 |
+
blocks,
|
60 |
+
color_map=color_map,
|
61 |
+
show_element_id=True,
|
62 |
+
id_font_size=14,
|
63 |
+
id_text_background_color='black',
|
64 |
+
id_text_color='white')
|
65 |
+
message = \
|
66 |
+
f'{len(blocks)} bounding boxes matched for {threshold} threshold, out of {len(layout_predicted)} total bounding boxes' if len(blocks) > 0 \
|
67 |
+
else f'No bounding boxesfor {threshold} threshold.'
|
68 |
+
cache = {
|
69 |
+
'annotated_image': annotated_image,
|
70 |
+
'message': message,
|
71 |
+
'threshold': threshold,
|
72 |
+
'image': image,
|
73 |
+
'predicted': layout_predicted
|
74 |
+
}
|
75 |
+
return annotated_image if just_image else [annotated_image, message, threshold]
|
76 |
+
except Exception as e:
|
77 |
+
error = traceback.format_exc()
|
78 |
+
return error if just_image else [None, error, threshold]
|
79 |
+
if not launch:
|
80 |
+
return fn
|
81 |
+
|
82 |
+
###########################################################
|
83 |
+
################### Start of Gradio setup #################
|
84 |
+
###########################################################
|
85 |
+
title = "Document Similarity Search using Detectron2"
|
86 |
+
description = "<h2>Document Similarity Search using Detectron2<h2>"
|
87 |
+
article = "<h4>More details, Links about this! - Document Similarity Search using Detectron2<h4>"
|
88 |
+
css = '''
|
89 |
+
image { max-height="86vh" !important; }
|
90 |
+
.center { display: flex; flex: 1 1 auto; align-items: center; align-content: center; justify-content: center; justify-items: center; }
|
91 |
+
'''
|
92 |
+
|
93 |
+
def preview(image_url):
|
94 |
+
try:
|
95 |
+
return [gr.Tabs(selected=0), get_RGB_image(image_url), None]
|
96 |
+
except:
|
97 |
+
error = traceback.format_exc()
|
98 |
+
return [gr.Tabs(selected=1), None, gr.HTML(value=error, visible=True)]
|
99 |
+
|
100 |
+
with gr.Blocks(title=title, css=css) as app:
|
101 |
+
with gr.Row():
|
102 |
+
gr.HTML(value=description, elem_classes=['center'])
|
103 |
+
with gr.Row():
|
104 |
+
with gr.Column():
|
105 |
+
with gr.Tabs() as tabs:
|
106 |
+
with gr.Tab("From Image", id=0):
|
107 |
+
document_image = gr.Image(type="pil", label="Document Image")
|
108 |
+
submit = gr.Button(value="Submit", variant="primary")
|
109 |
+
if len(examples) > 0:
|
110 |
+
gr.Examples(
|
111 |
+
examples=examples,
|
112 |
+
inputs=document_image,
|
113 |
+
label='Select any of these test examples')
|
114 |
+
with gr.Tab("From URL", id=1):
|
115 |
+
image_url = gr.Textbox(
|
116 |
+
label="Document Image Link",
|
117 |
+
info="Paste a Link to Document Image",
|
118 |
+
placeholder="https://datasets-server.huggingface.co/assets/ds4sd/icdar2023-doclaynet/--/2023.01/validation/6/image/image.jpg")
|
119 |
+
error_message = gr.HTML(label="Error Message", visible=False)
|
120 |
+
preview_btn = gr.Button(value="Preview", variant="primary")
|
121 |
+
with gr.Column():
|
122 |
+
with gr.Group():
|
123 |
+
annotated_document_image = gr.Image(type="pil", label="Annotated Document Image")
|
124 |
+
message = gr.HTML(label="Message")
|
125 |
+
threshold = gr.Slider(0.0, 1.0, value=0.0, label="Threshold", info="Choose between 0.0 and 1.0")
|
126 |
+
with gr.Row():
|
127 |
+
gr.HTML(value=article, elem_classes=['center'])
|
128 |
+
preview_btn.click(preview, [image_url], [tabs, document_image, error_message])
|
129 |
+
submit.click(
|
130 |
+
fn=lambda image: fn(image, just_image=False),
|
131 |
+
inputs=document_image,
|
132 |
+
outputs=[annotated_document_image, message, threshold])
|
133 |
+
threshold.change(
|
134 |
+
fn=lambda image, threshold: fn(image, threshold, just_image=False),
|
135 |
+
inputs=[document_image, threshold],
|
136 |
+
outputs=[annotated_document_image, message])
|
137 |
+
return app.launch
|
138 |
+
|
139 |
+
label_map = {0: 'Caption', 1: 'Footnote', 2: 'Formula', 3: 'List-item', 4: 'Page-footer', 5: 'Page-header', 6: 'Picture', 7: 'Section-header', 8: 'Table', 9: 'Text', 10: 'Title'}
|
140 |
+
color_map = {'Caption': '#acc2d9', 'Footnote': '#56ae57', 'Formula': '#b2996e', 'List-item': '#a8ff04', 'Page-footer': '#69d84f', 'Page-header': '#894585', 'Picture': '#70b23f', 'Section-header': '#d4ffff', 'Table': '#65ab7c', 'Text': '#952e8f', 'Title': '#fcfc81'}
|
141 |
+
config_path = './config.yaml'
|
142 |
+
model_path = './model_final.pth'
|
143 |
+
examples = ['./example.1.jpg', './example.2.jpg', './example.3.jpg']
|
144 |
+
|
145 |
+
infer = inference_factory(config_path, model_path, label_map, color_map, examples = examples)
|
146 |
+
infer(debug=True)
|