Spaces:
Runtime error
Runtime error
import os | |
# os.system("pip install -q gradio==4.10.0") | |
# os.system("pip install torch==2.1.0 torchvision torchaudio") | |
# os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git@v0.6'") | |
# os.system("pip install layoutparser==0.3.4 layoutparser[layoutmodels] layoutparser[ocr]") | |
# os.system("pip install requests==2.31.0") | |
os.system("pip install torch") | |
os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'") | |
os.system("pip install layoutparser layoutparser[layoutmodels] layoutparser[ocr]") | |
os.system("pip install Pillow==9.4.0") | |
import gradio as gr | |
import layoutparser as lp | |
from PIL import Image | |
from urllib.parse import urlparse | |
import requests | |
def get_RGB_image(image_or_path: str | Image.Image) -> bytes: | |
if isinstance(image_or_path, str): | |
if urlparse(image_or_path).scheme in ["http", "https"]: # Online | |
image_or_path = Image.open( | |
requests.get(image_or_path, stream=True).raw) | |
else: # Local | |
image_or_path = Image.open(image_or_path) | |
return image_or_path.convert("RGB") | |
def inference_factory(config_path: str, model_path: str, label_map: dict, color_map: dict, examples=[], launch=True): | |
import traceback | |
model: lp.elements.layout.Layout = lp.Detectron2LayoutModel( | |
config_path=config_path, | |
model_path=model_path, | |
# extra_config = ["MODEL.ROI_HEADS.SCORE_THRESH_TEST", 0.8], | |
label_map=label_map) | |
default_threshold = 0.8 | |
cache = { | |
'annotated_image': None, | |
'message': None, | |
'threshold': default_threshold, | |
'image': None, | |
'predicted': None | |
} | |
def truncate(f, n): | |
return int(f * 10 ** n) / 10 ** n | |
def fn(image: Image.Image, threshold: float = default_threshold, just_image=True): | |
try: | |
nonlocal cache | |
if cache['image'] == image and cache['threshold'] == threshold and bool(cache['annotated_image']): | |
return [cache['annotated_image'], cache['message'], cache['threshold']] | |
layout_predicted = cache['predicted'] if cache['image'] == image else model.detect( | |
image) | |
threshold = truncate( | |
min([max([block.score for block in layout_predicted] + [0])] + [threshold]), 1) | |
blocks: List[lp.elements.layout_elements.TextBlock] = [block.set( | |
id=f'{block.type}/{block.score:.2f}') for block in layout_predicted if block.score >= threshold] | |
annotated_image = lp.draw_box( | |
image, | |
blocks, | |
color_map=color_map, | |
show_element_id=True, | |
id_font_size=14, | |
id_text_background_color='black', | |
id_text_color='white') | |
message = \ | |
f'{len(blocks)} bounding boxes matched for {threshold} threshold, out of {len(layout_predicted)} total bounding boxes' if len(blocks) > 0 \ | |
else f'No bounding boxesfor {threshold} threshold.' | |
cache = { | |
'annotated_image': annotated_image, | |
'message': message, | |
'threshold': threshold, | |
'image': image, | |
'predicted': layout_predicted | |
} | |
return annotated_image if just_image else [annotated_image, message, threshold] | |
except Exception as e: | |
error = traceback.format_exc() | |
return error if just_image else [None, error, threshold] | |
if not launch: | |
return fn | |
########################################################### | |
################### Start of Gradio setup ################# | |
########################################################### | |
title = "Document Similarity Search using Detectron2" | |
description = "<h2>Document Similarity Search using Detectron2<h2>" | |
article = "<h4>More details, Links about this! - Document Similarity Search using Detectron2<h4>" | |
css = ''' | |
image { max-height="86vh" !important; } | |
.center { display: flex; flex: 1 1 auto; align-items: center; align-content: center; justify-content: center; justify-items: center; } | |
''' | |
def preview(image_url): | |
try: | |
return [gr.Tabs(selected=0), get_RGB_image(image_url), None] | |
except: | |
error = traceback.format_exc() | |
return [gr.Tabs(selected=1), None, gr.HTML(value=error, visible=True)] | |
with gr.Blocks(title=title, css=css) as app: | |
with gr.Row(): | |
gr.HTML(value=description, elem_classes=['center']) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tabs() as tabs: | |
with gr.Tab("From Image", id=0): | |
document_image = gr.Image(type="pil", label="Document Image") | |
submit = gr.Button(value="Submit", variant="primary") | |
if len(examples) > 0: | |
gr.Examples( | |
examples=examples, | |
inputs=document_image, | |
label='Select any of these test examples') | |
with gr.Tab("From URL", id=1): | |
image_url = gr.Textbox( | |
label="Document Image Link", | |
info="Paste a Link to Document Image", | |
placeholder="https://datasets-server.huggingface.co/assets/ds4sd/icdar2023-doclaynet/--/2023.01/validation/6/image/image.jpg") | |
error_message = gr.HTML(label="Error Message", visible=False) | |
preview_btn = gr.Button(value="Preview", variant="primary") | |
with gr.Column(): | |
with gr.Group(): | |
annotated_document_image = gr.Image(type="pil", label="Annotated Document Image") | |
message = gr.HTML(label="Message") | |
threshold = gr.Slider(0.0, 1.0, value=0.0, label="Threshold", info="Choose between 0.0 and 1.0") | |
with gr.Row(): | |
gr.HTML(value=article, elem_classes=['center']) | |
preview_btn.click(preview, [image_url], [tabs, document_image, error_message]) | |
submit.click( | |
fn=lambda image: fn(image, just_image=False), | |
inputs=document_image, | |
outputs=[annotated_document_image, message, threshold]) | |
threshold.change( | |
fn=lambda image, threshold: fn(image, threshold, just_image=False), | |
inputs=[document_image, threshold], | |
outputs=[annotated_document_image, message]) | |
return app.launch | |
label_map = {0: 'Caption', 1: 'Footnote', 2: 'Formula', 3: 'List-item', 4: 'Page-footer', 5: 'Page-header', 6: 'Picture', 7: 'Section-header', 8: 'Table', 9: 'Text', 10: 'Title'} | |
color_map = {'Caption': '#acc2d9', 'Footnote': '#56ae57', 'Formula': '#b2996e', 'List-item': '#a8ff04', 'Page-footer': '#69d84f', 'Page-header': '#894585', 'Picture': '#70b23f', 'Section-header': '#d4ffff', 'Table': '#65ab7c', 'Text': '#952e8f', 'Title': '#fcfc81'} | |
config_path = './config.yaml' | |
model_path = './model_final.pth' | |
examples = ['./example.1.jpg', './example.2.jpg', './example.3.jpg'] | |
infer = inference_factory(config_path, model_path, label_map, color_map, examples = examples) | |
infer(debug=True) | |