mckabue's picture
2023-12-19-18-00-03
a31b6f8
import os
# os.system("pip install -q gradio==4.10.0")
# os.system("pip install torch==2.1.0 torchvision torchaudio")
# os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git@v0.6'")
# os.system("pip install layoutparser==0.3.4 layoutparser[layoutmodels] layoutparser[ocr]")
# os.system("pip install requests==2.31.0")
os.system("pip install torch")
os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'")
os.system("pip install layoutparser layoutparser[layoutmodels] layoutparser[ocr]")
os.system("pip install Pillow==9.4.0")
import gradio as gr
import layoutparser as lp
from PIL import Image
from urllib.parse import urlparse
import requests
def get_RGB_image(image_or_path: str | Image.Image) -> bytes:
if isinstance(image_or_path, str):
if urlparse(image_or_path).scheme in ["http", "https"]: # Online
image_or_path = Image.open(
requests.get(image_or_path, stream=True).raw)
else: # Local
image_or_path = Image.open(image_or_path)
return image_or_path.convert("RGB")
def inference_factory(config_path: str, model_path: str, label_map: dict, color_map: dict, examples=[], launch=True):
import traceback
model: lp.elements.layout.Layout = lp.Detectron2LayoutModel(
config_path=config_path,
model_path=model_path,
# extra_config = ["MODEL.ROI_HEADS.SCORE_THRESH_TEST", 0.8],
label_map=label_map)
default_threshold = 0.8
cache = {
'annotated_image': None,
'message': None,
'threshold': default_threshold,
'image': None,
'predicted': None
}
def truncate(f, n):
return int(f * 10 ** n) / 10 ** n
def fn(image: Image.Image, threshold: float = default_threshold, just_image=True):
try:
nonlocal cache
if cache['image'] == image and cache['threshold'] == threshold and bool(cache['annotated_image']):
return [cache['annotated_image'], cache['message'], cache['threshold']]
layout_predicted = cache['predicted'] if cache['image'] == image else model.detect(
image)
threshold = truncate(
min([max([block.score for block in layout_predicted] + [0])] + [threshold]), 1)
blocks: List[lp.elements.layout_elements.TextBlock] = [block.set(
id=f'{block.type}/{block.score:.2f}') for block in layout_predicted if block.score >= threshold]
annotated_image = lp.draw_box(
image,
blocks,
color_map=color_map,
show_element_id=True,
id_font_size=14,
id_text_background_color='black',
id_text_color='white')
message = \
f'{len(blocks)} bounding boxes matched for {threshold} threshold, out of {len(layout_predicted)} total bounding boxes' if len(blocks) > 0 \
else f'No bounding boxesfor {threshold} threshold.'
cache = {
'annotated_image': annotated_image,
'message': message,
'threshold': threshold,
'image': image,
'predicted': layout_predicted
}
return annotated_image if just_image else [annotated_image, message, threshold]
except Exception as e:
error = traceback.format_exc()
return error if just_image else [None, error, threshold]
if not launch:
return fn
###########################################################
################### Start of Gradio setup #################
###########################################################
title = "Document Similarity Search using Detectron2"
description = "<h2>Document Similarity Search using Detectron2<h2>"
article = "<h4>More details, Links about this! - Document Similarity Search using Detectron2<h4>"
css = '''
image { max-height="86vh" !important; }
.center { display: flex; flex: 1 1 auto; align-items: center; align-content: center; justify-content: center; justify-items: center; }
'''
def preview(image_url):
try:
return [gr.Tabs(selected=0), get_RGB_image(image_url), None]
except:
error = traceback.format_exc()
return [gr.Tabs(selected=1), None, gr.HTML(value=error, visible=True)]
with gr.Blocks(title=title, css=css) as app:
with gr.Row():
gr.HTML(value=description, elem_classes=['center'])
with gr.Row():
with gr.Column():
with gr.Tabs() as tabs:
with gr.Tab("From Image", id=0):
document_image = gr.Image(type="pil", label="Document Image")
submit = gr.Button(value="Submit", variant="primary")
if len(examples) > 0:
gr.Examples(
examples=examples,
inputs=document_image,
label='Select any of these test examples')
with gr.Tab("From URL", id=1):
image_url = gr.Textbox(
label="Document Image Link",
info="Paste a Link to Document Image",
placeholder="https://datasets-server.huggingface.co/assets/ds4sd/icdar2023-doclaynet/--/2023.01/validation/6/image/image.jpg")
error_message = gr.HTML(label="Error Message", visible=False)
preview_btn = gr.Button(value="Preview", variant="primary")
with gr.Column():
with gr.Group():
annotated_document_image = gr.Image(type="pil", label="Annotated Document Image")
message = gr.HTML(label="Message")
threshold = gr.Slider(0.0, 1.0, value=0.0, label="Threshold", info="Choose between 0.0 and 1.0")
with gr.Row():
gr.HTML(value=article, elem_classes=['center'])
preview_btn.click(preview, [image_url], [tabs, document_image, error_message])
submit.click(
fn=lambda image: fn(image, just_image=False),
inputs=document_image,
outputs=[annotated_document_image, message, threshold])
threshold.change(
fn=lambda image, threshold: fn(image, threshold, just_image=False),
inputs=[document_image, threshold],
outputs=[annotated_document_image, message])
return app.launch
label_map = {0: 'Caption', 1: 'Footnote', 2: 'Formula', 3: 'List-item', 4: 'Page-footer', 5: 'Page-header', 6: 'Picture', 7: 'Section-header', 8: 'Table', 9: 'Text', 10: 'Title'}
color_map = {'Caption': '#acc2d9', 'Footnote': '#56ae57', 'Formula': '#b2996e', 'List-item': '#a8ff04', 'Page-footer': '#69d84f', 'Page-header': '#894585', 'Picture': '#70b23f', 'Section-header': '#d4ffff', 'Table': '#65ab7c', 'Text': '#952e8f', 'Title': '#fcfc81'}
config_path = './config.yaml'
model_path = './model_final.pth'
examples = ['./example.1.jpg', './example.2.jpg', './example.3.jpg']
infer = inference_factory(config_path, model_path, label_map, color_map, examples = examples)
infer(debug=True)