"""LangGraph Agent""" import os from langchain_openai import ChatOpenAI from langgraph.graph import START, StateGraph from langgraph.prebuilt import tools_condition, ToolNode from langgraph.graph import START, StateGraph, MessagesState from langchain_core.messages import SystemMessage, HumanMessage from tools import level1_tools # Build graph function def build_agent_graph(): """Build the graph""" # Load environment variables from .env file llm = ChatOpenAI(model="gpt-4o-mini") # Bind tools to LLM llm_with_tools = llm.bind_tools(level1_tools) # Node def assistant(state: MessagesState): """Assistant node""" return {"messages": [llm_with_tools.invoke(state["messages"])]} builder = StateGraph(MessagesState) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(level1_tools)) builder.add_edge(START, "assistant") builder.add_conditional_edges( "assistant", tools_condition, ) builder.add_edge("tools", "assistant") # Compile graph return builder.compile() # test if __name__ == "__main__": question1 = "How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)?" question2 = "Convert 10 miles to kilometers." # Build the graph graph = build_agent_graph() # Run the graph messages = [HumanMessage(content=question1)] messages = graph.invoke({"messages": messages}) for m in messages["messages"]: m.pretty_print()