Spaces:
Sleeping
Sleeping
File size: 9,349 Bytes
818fde4 d5411e4 818fde4 d5411e4 818fde4 d5411e4 818fde4 afadec7 818fde4 d5411e4 952df75 afadec7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import tempfile
import requests
import os
#from time import sleep
from dotenv import load_dotenv
#from urllib.parse import urlparse
from typing import Optional, List
import yt_dlp
import wikipedia
from smolagents import tool
#from google.genai import types
from PIL import Image
#from google import genai
#from dotenv import load_dotenv
#from model_provider import create_react_model, create_vision_model
#import imageio
load_dotenv(override=True)
@tool
def read_file(filepath: str ) -> str:
"""
Used to read the content of a file. Returns the content as a string.
Will only work for text-based files, such as .txt files or code files.
Do not use for audio or visual files.
Args:
filepath (str): The path to the file to be read.
Returns:
str: Content of the file as a string.
"""
try:
with open(filepath, 'r', encoding='utf-8') as file:
content = file.read()
print(content)
return content
except FileNotFoundError:
print(f"File not found: {filepath}")
except IOError as e:
print(f"Error reading file: {str(e)}")
@tool
def extract_text_from_image(image_path: str) -> str:
"""
Extract text from an image using pytesseract (if available).
Args:
image_path: Path to the image file
Returns:
Extracted text or error message
"""
try:
# Try to import pytesseract
import pytesseract
from PIL import Image
# Open the image
image = Image.open(image_path)
# Extract text
text = pytesseract.image_to_string(image)
return f"Extracted text from image:\n\n{text}"
except ImportError:
return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract'"
except Exception as e:
return f"Error extracting text from image: {str(e)}"
@tool
def analyze_csv_file(file_path: str, query: str) -> str:
"""
Analyze a CSV file using pandas and answer a question about it.
To use this file you need to have saved it in a location and pass that location to the function.
The download_file_from_url tool will save it by name to tempfile.gettempdir()
Args:
file_path: Path to the CSV file
query: Question about the data
Returns:
Analysis result or error message
"""
try:
import pandas as pd
# Read the CSV file
df = pd.read_csv(file_path)
# Run various analyses based on the query
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
result += f"Columns: {', '.join(df.columns)}\n\n"
# Add summary statistics
result += "Summary statistics:\n"
result += str(df.describe())
return result
except ImportError:
return "Error: pandas is not installed. Please install it with 'pip install pandas'."
except Exception as e:
return f"Error analyzing CSV file: {str(e)}"
@tool
def analyze_excel_file(file_path: str, query: str) -> str:
"""
Analyze an Excel file using pandas and answer a question about it.
To use this file you need to have saved it in a location and pass that location to the function.
The download_file_from_url tool will save it by name to tempfile.gettempdir()
Args:
file_path: Path to the Excel file
query: Question about the data
Returns:
Analysis result or error message
"""
try:
import pandas as pd
# Read the Excel file
df = pd.read_excel(file_path)
# Run various analyses based on the query
result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
result += f"Columns: {', '.join(df.columns)}\n\n"
# Add summary statistics
result += "Summary statistics:\n"
result += str(df.describe())
return result
except ImportError:
return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
except Exception as e:
return f"Error analyzing Excel file: {str(e)}"
import whisper
@tool
def youtube_transcribe(url: str) -> str:
"""
Transcribes a YouTube video. Use when you need to process the audio from a YouTube video into Text.
Args:
url: Url of the YouTube video
"""
model_size: str = "base"
# Load model
model = whisper.load_model(model_size)
with tempfile.TemporaryDirectory() as tmpdir:
# Download audio
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': os.path.join(tmpdir, 'audio.%(ext)s'),
'quiet': True,
'noplaylist': True,
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '192',
}],
'force_ipv4': True,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
audio_path = next((os.path.join(tmpdir, f) for f in os.listdir(tmpdir) if f.endswith('.wav')), None)
if not audio_path:
raise RuntimeError("Failed to find audio")
# Transcribe
result = model.transcribe(audio_path)
return result['text']
@tool
def transcribe_audio(audio_file_path: str) -> str:
"""
Transcribes an audio file. Use when you need to process audio data.
DO NOT use this tool for YouTube video; use the youtube_transcribe tool to process audio data from YouTube.
Use this tool when you have an audio file in .mp3, .wav, .aac, .ogg, .flac, .m4a, .alac or .wma
Args:
audio_file_path: Filepath to the audio file (str)
"""
model_size: str = "small"
# Load model
model = whisper.load_model(model_size)
result = model.transcribe(audio_file_path)
return result['text']
@tool
def wikipedia_search(query: str) -> dict:
"""
Search Wikipedia for a given query and return the first 10 results with summaries.
Args:
query: The search term or topic.
Returns:
A dictionary with a 'wiki_results' key containing formatted Wikipedia summaries.
"""
wikipedia.set_lang("en")
try:
results = wikipedia.search(query, results=10)
summaries = []
for title in results:
try:
summary = wikipedia.summary(title, sentences=2)
summaries.append(f"## {title}\n{summary}")
except wikipedia.exceptions.DisambiguationError as e:
summaries.append(f"## {title}\nDisambiguation required. Example options: {e.options[:3]}")
except wikipedia.exceptions.PageError:
summaries.append(f"## {title}\nPage not found.")
formatted = "\n\n---\n\n".join(summaries)
return {"wiki_results": formatted}
except Exception as e:
return {"wiki_results": f"Error during Wikipedia search: {str(e)}"}
#Mathematical tools
@tool
def multiply(a: float, b: float) -> float:
"""Multiply two numbers.
Args:
a: first number
b: second number
Returns:
Multiplication result
"""
return a * b
@tool
def add(a: float, b: float) -> float:
"""Add two numbers.
Args:
a: first number
b: second number
Returns:
Addition result
"""
return a + b
@tool
def subtract(a: float, b: float) -> float:
"""Subtract two numbers.
Args:
a: first number
b: second number
Returns:
Subtraction result
"""
return a - b
@tool
def divide(a: float, b: float) -> float:
"""Divide two numbers.
Args:
a: first number
b: second number
Returns:
Division result
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first number
b: second number
Returns:
Modulus result
"""
return a % b
@tool
def convert_units(value: float, from_unit: str, to_unit: str) -> float:
"""
Converts a value from one unit to another.
Args:
value: The numerical value to convert.
from_unit: The original unit (e.g. 'miles', 'kg', 'celsius').
to_unit: The target unit (e.g. 'kilometers', 'lb', 'fahrenheit').
Supported conversions:
- miles <-> kilometers
- kilograms <-> pounds
- celsius <-> fahrenheit
Returns:
The converted value result.
"""
conversions = {
("miles", "kilometers"): lambda v: v * 1.60934,
("kilometers", "miles"): lambda v: v / 1.60934,
("kilograms", "pounds"): lambda v: v * 2.20462,
("pounds", "kilograms"): lambda v: v / 2.20462,
("celsius", "fahrenheit"): lambda v: (v * 9/5) + 32,
("fahrenheit", "celsius"): lambda v: (v - 32) * 5/9,
}
key = (from_unit.lower(), to_unit.lower())
if key not in conversions:
raise ValueError(f"Conversion from {from_unit} to {to_unit} not supported.")
return conversions[key](value) |