File size: 9,349 Bytes
818fde4
 
 
 
d5411e4
 
 
818fde4
 
d5411e4
 
 
 
 
818fde4
 
d5411e4
 
818fde4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afadec7
818fde4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5411e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
952df75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afadec7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import tempfile
import requests
import os

#from time import sleep
from dotenv import load_dotenv
#from urllib.parse import urlparse
from typing import Optional, List
import yt_dlp
import wikipedia

from smolagents import tool

#from google.genai import types

from PIL import Image
#from google import genai
#from dotenv import load_dotenv
#from model_provider import create_react_model, create_vision_model
#import imageio

load_dotenv(override=True)


@tool
def read_file(filepath: str ) -> str:
    """
    Used to read the content of a file.  Returns the content as a string.
    Will only work for text-based files, such as .txt files or code files.
    Do not use for audio or visual files. 
    
    Args:
        filepath (str): The path to the file to be read.
    Returns:
        str: Content of the file as a string.
    """
    try:
        with open(filepath, 'r', encoding='utf-8') as file:
            content = file.read()
        print(content)
        return content
    except FileNotFoundError:
        print(f"File not found: {filepath}")
    except IOError as e:
        print(f"Error reading file: {str(e)}")


@tool
def extract_text_from_image(image_path: str) -> str:
    """
    Extract text from an image using pytesseract (if available).
    
    Args:
        image_path: Path to the image file
        
    Returns:
        Extracted text or error message
    """
    try:
        # Try to import pytesseract
        import pytesseract
        from PIL import Image
        
        # Open the image
        image = Image.open(image_path)
        
        # Extract text
        text = pytesseract.image_to_string(image)
        
        return f"Extracted text from image:\n\n{text}"
    except ImportError:
        return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract'"
    except Exception as e:
        return f"Error extracting text from image: {str(e)}"

@tool
def analyze_csv_file(file_path: str, query: str) -> str:
    """
    Analyze a CSV file using pandas and answer a question about it.  
    To use this file you need to have saved it in a location and pass that location to the function.
    The download_file_from_url tool will save it by name to tempfile.gettempdir()
    
    Args:
        file_path: Path to the CSV file
        query: Question about the data
        
    Returns:
        Analysis result or error message
    """
    try:
        import pandas as pd
        
        # Read the CSV file
        df = pd.read_csv(file_path)
        
        # Run various analyses based on the query
        result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"
        
        # Add summary statistics
        result += "Summary statistics:\n"
        result += str(df.describe())
        
        return result
    except ImportError:
        return "Error: pandas is not installed. Please install it with 'pip install pandas'."
    except Exception as e:
        return f"Error analyzing CSV file: {str(e)}"

@tool
def analyze_excel_file(file_path: str, query: str) -> str:
    """
    Analyze an Excel file using pandas and answer a question about it.
    To use this file you need to have saved it in a location and pass that location to the function.
    The download_file_from_url tool will save it by name to tempfile.gettempdir()
    
    Args:
        file_path: Path to the Excel file
        query: Question about the data
        
    Returns:
        Analysis result or error message
    """
    try:
        import pandas as pd
        
        # Read the Excel file
        df = pd.read_excel(file_path)
        
        # Run various analyses based on the query
        result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"
        
        # Add summary statistics
        result += "Summary statistics:\n"
        result += str(df.describe())
        
        return result
    except ImportError:
        return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
    except Exception as e:
        return f"Error analyzing Excel file: {str(e)}"

import whisper

@tool
def youtube_transcribe(url: str) -> str:
    """
    Transcribes a YouTube video.  Use when you need to process the audio from a YouTube video into Text.
    Args:
        url: Url of the YouTube video
    """
    model_size: str = "base"
    # Load model
    model = whisper.load_model(model_size)
    with tempfile.TemporaryDirectory() as tmpdir:
        # Download audio
        ydl_opts = {
            'format': 'bestaudio/best',
            'outtmpl': os.path.join(tmpdir, 'audio.%(ext)s'),
            'quiet': True,
            'noplaylist': True,
            'postprocessors': [{
                'key': 'FFmpegExtractAudio',
                'preferredcodec': 'wav',
                'preferredquality': '192',
            }],
            'force_ipv4': True,
        }
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            info = ydl.extract_info(url, download=True)

        audio_path = next((os.path.join(tmpdir, f) for f in os.listdir(tmpdir) if f.endswith('.wav')), None)
        if not audio_path:
            raise RuntimeError("Failed to find audio")

        # Transcribe
        result = model.transcribe(audio_path)
        return result['text']

@tool
def transcribe_audio(audio_file_path: str) -> str:
    """
    Transcribes an audio file.  Use when you need to process audio data.
    DO NOT use this tool for YouTube video; use the youtube_transcribe tool to process audio data from YouTube.
    Use this tool when you have an audio file in .mp3, .wav, .aac, .ogg, .flac, .m4a, .alac or .wma
    Args:
        audio_file_path: Filepath to the audio file (str)
    """
    model_size: str = "small"
    # Load model
    model = whisper.load_model(model_size)
    result = model.transcribe(audio_file_path)
    return result['text']


@tool
def wikipedia_search(query: str) -> dict:
    """
    Search Wikipedia for a given query and return the first 10 results with summaries.
    
    Args:
        query: The search term or topic.
    Returns:
        A dictionary with a 'wiki_results' key containing formatted Wikipedia summaries.
    """
    wikipedia.set_lang("en")
    try:
        results = wikipedia.search(query, results=10)
        summaries = []
        for title in results:
            try:
                summary = wikipedia.summary(title, sentences=2)
                summaries.append(f"## {title}\n{summary}")
            except wikipedia.exceptions.DisambiguationError as e:
                summaries.append(f"## {title}\nDisambiguation required. Example options: {e.options[:3]}")
            except wikipedia.exceptions.PageError:
                summaries.append(f"## {title}\nPage not found.")
        
        formatted = "\n\n---\n\n".join(summaries)
        return {"wiki_results": formatted}
    
    except Exception as e:
        return {"wiki_results": f"Error during Wikipedia search: {str(e)}"}
    
    
#Mathematical tools
@tool
def multiply(a: float, b: float) -> float:
    """Multiply two numbers.
    Args:
        a: first number
        b: second number
    Returns: 
        Multiplication result
    """
    return a * b


@tool
def add(a: float, b: float) -> float:
    """Add two numbers.
    Args:
        a: first number
        b: second number
    Returns: 
        Addition result
    """
    return a + b


@tool
def subtract(a: float, b: float) -> float:
    """Subtract two numbers.
    Args:
        a: first number
        b: second number
    Returns: 
        Subtraction result
    """
    return a - b


@tool
def divide(a: float, b: float) -> float:
    """Divide two numbers.
    Args:
        a: first number
        b: second number
    Returns: 
        Division result
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b


@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.
    Args:
        a: first number
        b: second number
    Returns:
        Modulus result
    """
    return a % b


@tool
def convert_units(value: float, from_unit: str, to_unit: str) -> float:
    """
    Converts a value from one unit to another.

    Args:
        value: The numerical value to convert.
        from_unit: The original unit (e.g. 'miles', 'kg', 'celsius').
        to_unit: The target unit (e.g. 'kilometers', 'lb', 'fahrenheit').

    Supported conversions:
        - miles <-> kilometers
        - kilograms <-> pounds
        - celsius <-> fahrenheit

    Returns:
        The converted value result.
    """
    conversions = {
        ("miles", "kilometers"): lambda v: v * 1.60934,
        ("kilometers", "miles"): lambda v: v / 1.60934,
        ("kilograms", "pounds"): lambda v: v * 2.20462,
        ("pounds", "kilograms"): lambda v: v / 2.20462,
        ("celsius", "fahrenheit"): lambda v: (v * 9/5) + 32,
        ("fahrenheit", "celsius"): lambda v: (v - 32) * 5/9,
    }

    key = (from_unit.lower(), to_unit.lower())
    if key not in conversions:
        raise ValueError(f"Conversion from {from_unit} to {to_unit} not supported.")

    return conversions[key](value)