Spaces:
Sleeping
Sleeping
File size: 14,330 Bytes
818fde4 d5411e4 818fde4 d5411e4 818fde4 d5411e4 818fde4 d5411e4 818fde4 d5411e4 818fde4 d5411e4 952df75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
import tempfile
import requests
import os
#from time import sleep
from dotenv import load_dotenv
#from urllib.parse import urlparse
from typing import Optional, List
import yt_dlp
import wikipedia
from smolagents import tool
#from google.genai import types
from PIL import Image
#from google import genai
#from dotenv import load_dotenv
#from model_provider import create_react_model, create_vision_model
#import imageio
load_dotenv(override=True)
'''
@tool
def use_vision_model(question: str, images: List[Image.Image]) -> str:
"""
Use a Vision Model to answer a question about a set of images.
Always use this tool to ask questions about a set of images you have been provided.
This function uses an image-to-text AI model.
You can ask a question about a list of one image or a list of multiple images.
So, if you have multiple images that you want to ask the same question of, pass the entire list of images to the model.
Ensure your prompt is specific enough to retrieve the exact information you are looking for.
Args:
question: The question to ask about the images. Type: str
images: The list of images to as the question about. Type: List[PIL.Image.Image]
"""
image_model = create_vision_model()
content = [
{
"type": "text",
"text": question
}
]
print(f"Asking model a question about {len(images)} images")
for image in images:
content.append({
"type": "image",
"image": image # ✅ Directly the PIL Image, no wrapping
})
messages = [
{
"role": "user",
"content": content
}
]
output = image_model(messages).content
print(f'Model returned: {output}')
return output
@tool
def youtube_frames_to_images(url: str, sample_interval_frames: int = 24) -> List[Image.Image]:
"""
Reviews a YouTube video and returns a List of PIL Images (List[PIL.Image.Image]), which can then be reviewed by a vision model.
Only use this tool if you have been given a YouTube video that you need to analyze.
This will generate a list of images, and you can use the use_vision_model tool to analyze those images
Args:
url: The Youtube URL
sample_interval_frames: The sampling interval (default is 24 frames)
"""
with tempfile.TemporaryDirectory() as tmpdir:
# Download the video locally
ydl_opts = {
'format': 'bestvideo[height<=1080]+bestaudio/best[height<=1080]/best',
'outtmpl': os.path.join(tmpdir, 'video.%(ext)s'),
'quiet': True,
'noplaylist': True,
'merge_output_format': 'mp4',
'force_ipv4': True, # Avoid IPv6 issues
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
# Find the downloaded file
video_path = None
for file in os.listdir(tmpdir):
if file.endswith('.mp4'):
video_path = os.path.join(tmpdir, file)
break
if not video_path:
raise RuntimeError("Failed to download video as mp4")
# ✅ Fix: Use `imageio.get_reader()` instead of `imopen()`
reader = imageio.get_reader(video_path) # Works for frame-by-frame iteration
# metadata = reader.get_meta_data()
# fps = metadata.get('fps')
# if fps is None:
# reader.close()
# raise RuntimeError("Unable to determine FPS from video metadata")
# frame_interval = int(fps * sample_interval_frames)
frame_interval = sample_interval_frames # Use the provided interval directly
images: List[Image.Image] = []
# ✅ Iterate over frames using `get_reader()`
for idx, frame in enumerate(reader):
print(f"Processing frame {idx}")
if idx % frame_interval == 0:
images.append(Image.fromarray(frame))
reader.close()
return images
@tool
def review_youtube_video(url: str, question: str) -> str:
"""
Reviews a YouTube video and answers a specific question about that video.
Args:
url (str): the URL to the YouTube video. Should be like this format: https://www.youtube.com/watch?v=9hE5-98ZeCg
question (str): The question you are asking about the video
"""
try:
client = genai.Client(api_key=os.getenv('GEMINI_KEY'))
model = 'gemini-2.0-flash-lite'
response = client.models.generate_content(
model=model,
contents=types.Content(
parts=[
types.Part(
file_data=types.FileData(file_uri=url)
),
types.Part(text=question)
]
)
)
return response.text
except Exception as e:
return f"Error asking {model} about video: {str(e)}"
'''
@tool
def read_file(filepath: str ) -> str:
"""
Used to read the content of a file. Returns the content as a string.
Will only work for text-based files, such as .txt files or code files.
Do not use for audio or visual files.
Args:
filepath (str): The path to the file to be read.
Returns:
str: Content of the file as a string.
Raises:
IOError: If there is an error opening or reading from the file.
"""
try:
with open(filepath, 'r', encoding='utf-8') as file:
content = file.read()
print(content)
return content
except FileNotFoundError:
print(f"File not found: {filepath}")
except IOError as e:
print(f"Error reading file: {str(e)}")
@tool
def extract_text_from_image(image_path: str) -> str:
"""
Extract text from an image using pytesseract (if available).
Args:
image_path: Path to the image file
Returns:
Extracted text or error message
"""
try:
# Try to import pytesseract
import pytesseract
from PIL import Image
# Open the image
image = Image.open(image_path)
# Extract text
text = pytesseract.image_to_string(image)
return f"Extracted text from image:\n\n{text}"
except ImportError:
return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system."
except Exception as e:
return f"Error extracting text from image: {str(e)}"
@tool
def analyze_csv_file(file_path: str, query: str) -> str:
"""
Analyze a CSV file using pandas and answer a question about it.
To use this file you need to have saved it in a location and pass that location to the function.
The download_file_from_url tool will save it by name to tempfile.gettempdir()
Args:
file_path: Path to the CSV file
query: Question about the data
Returns:
Analysis result or error message
"""
try:
import pandas as pd
# Read the CSV file
df = pd.read_csv(file_path)
# Run various analyses based on the query
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
result += f"Columns: {', '.join(df.columns)}\n\n"
# Add summary statistics
result += "Summary statistics:\n"
result += str(df.describe())
return result
except ImportError:
return "Error: pandas is not installed. Please install it with 'pip install pandas'."
except Exception as e:
return f"Error analyzing CSV file: {str(e)}"
@tool
def analyze_excel_file(file_path: str, query: str) -> str:
"""
Analyze an Excel file using pandas and answer a question about it.
To use this file you need to have saved it in a location and pass that location to the function.
The download_file_from_url tool will save it by name to tempfile.gettempdir()
Args:
file_path: Path to the Excel file
query: Question about the data
Returns:
Analysis result or error message
"""
try:
import pandas as pd
# Read the Excel file
df = pd.read_excel(file_path)
# Run various analyses based on the query
result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
result += f"Columns: {', '.join(df.columns)}\n\n"
# Add summary statistics
result += "Summary statistics:\n"
result += str(df.describe())
return result
except ImportError:
return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
except Exception as e:
return f"Error analyzing Excel file: {str(e)}"
import whisper
@tool
def youtube_transcribe(url: str) -> str:
"""
Transcribes a YouTube video. Use when you need to process the audio from a YouTube video into Text.
Args:
url: Url of the YouTube video
"""
model_size: str = "base"
# Load model
model = whisper.load_model(model_size)
with tempfile.TemporaryDirectory() as tmpdir:
# Download audio
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': os.path.join(tmpdir, 'audio.%(ext)s'),
'quiet': True,
'noplaylist': True,
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '192',
}],
'force_ipv4': True,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
audio_path = next((os.path.join(tmpdir, f) for f in os.listdir(tmpdir) if f.endswith('.wav')), None)
if not audio_path:
raise RuntimeError("Failed to find audio")
# Transcribe
result = model.transcribe(audio_path)
return result['text']
@tool
def transcribe_audio(audio_file_path: str) -> str:
"""
Transcribes an audio file. Use when you need to process audio data.
DO NOT use this tool for YouTube video; use the youtube_transcribe tool to process audio data from YouTube.
Use this tool when you have an audio file in .mp3, .wav, .aac, .ogg, .flac, .m4a, .alac or .wma
Args:
audio_file_path: Filepath to the audio file (str)
"""
model_size: str = "small"
# Load model
model = whisper.load_model(model_size)
result = model.transcribe(audio_file_path)
return result['text']
@tool
def wikipedia_search(query: str) -> dict:
"""
Search Wikipedia for a given query and return the first 10 results with summaries.
Args:
query: The search term or topic.
Returns:
A dictionary with a 'wiki_results' key containing formatted Wikipedia summaries.
"""
wikipedia.set_lang("en")
try:
results = wikipedia.search(query, results=10)
summaries = []
for title in results:
try:
summary = wikipedia.summary(title, sentences=2)
summaries.append(f"## {title}\n{summary}")
except wikipedia.exceptions.DisambiguationError as e:
summaries.append(f"## {title}\nDisambiguation required. Example options: {e.options[:3]}")
except wikipedia.exceptions.PageError:
summaries.append(f"## {title}\nPage not found.")
formatted = "\n\n---\n\n".join(summaries)
return {"wiki_results": formatted}
except Exception as e:
return {"wiki_results": f"Error during Wikipedia search: {str(e)}"}
#Mathematical tools
@tool
def multiply(a: float, b: float) -> float:
"""Multiply two numbers.
Args:
a: first number
b: second number
Returns:
Multiplication result
"""
return a * b
@tool
def add(a: float, b: float) -> float:
"""Add two numbers.
Args:
a: first number
b: second number
Returns:
Addition result
"""
return a + b
@tool
def subtract(a: float, b: float) -> float:
"""Subtract two numbers.
Args:
a: first number
b: second number
Returns:
Subtraction result
"""
return a - b
@tool
def divide(a: float, b: float) -> float:
"""Divide two numbers.
Args:
a: first number
b: second number
Returns:
Division result
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first number
b: second number
Returns:
Modulus result
"""
return a % b
from langchain_core.tools import tool
@tool
def convert_units(value: float, from_unit: str, to_unit: str) -> float:
"""
Converts a value from one unit to another.
Args:
value: The numerical value to convert.
from_unit: The original unit (e.g. 'miles', 'kg', 'celsius').
to_unit: The target unit (e.g. 'kilometers', 'lb', 'fahrenheit').
Supported conversions:
- miles <-> kilometers
- kilograms <-> pounds
- celsius <-> fahrenheit
Returns:
The converted value result.
"""
conversions = {
("miles", "kilometers"): lambda v: v * 1.60934,
("kilometers", "miles"): lambda v: v / 1.60934,
("kilograms", "pounds"): lambda v: v * 2.20462,
("pounds", "kilograms"): lambda v: v / 2.20462,
("celsius", "fahrenheit"): lambda v: (v * 9/5) + 32,
("fahrenheit", "celsius"): lambda v: (v - 32) * 5/9,
}
key = (from_unit.lower(), to_unit.lower())
if key not in conversions:
raise ValueError(f"Conversion from {from_unit} to {to_unit} not supported.")
return conversions[key](value)
level1_tools = [
multiply,
add,
subtract,
divide,
modulus,
read_file,
extract_text_from_image,
analyze_csv_file,
analyze_excel_file,
youtube_transcribe,
transcribe_audio,
wikipedia_search
]
|