File size: 20,975 Bytes
e87cacb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6b181a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
# app.py - Gradio version (much simpler for HF Spaces)

import gradio as gr
import logging
import spaces

import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

import unsloth
from unsloth import FastModel
from peft import PeftModel
from huggingface_hub import hf_hub_download

import json
import re
import math
import time

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Global variables for model and tokenizer
label_mapping = {0: "✅ Correct", 1: "🤔 Conceptually Flawed", 2: "🔢 Computationally Flawed"}




# ===================================================================
# 1. DEFINE CUSTOM CLASSIFIER (Required for Phi-4)
# ===================================================================
class GPTSequenceClassifier(nn.Module):
    def __init__(self, base_model, num_labels):
        super().__init__()
        self.base = base_model
        hidden_size = base_model.config.hidden_size
        self.classifier = nn.Linear(hidden_size, num_labels, bias=True)
        self.num_labels = num_labels

    def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
        outputs = self.base(input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True, **kwargs)
        last_hidden_state = outputs.hidden_states[-1]
        pooled_output = last_hidden_state[:, -1, :]
        logits = self.classifier(pooled_output)
        loss = None
        if labels is not None:
            loss = nn.functional.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
        return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}
        

        
        
# --- Helper Functions ---
def format_solution_into_json_str(solution_text: str) -> str:
    lines = [line.strip() for line in solution_text.strip().split('\n') if line.strip()]
    final_answer = ""
    if lines and "FINAL ANSWER:" in lines[-1].upper():
        final_answer = lines[-1][len("FINAL ANSWER:"):].strip()
        lines = lines[:-1]
    solution_dict = {f"L{i+1}": line for i, line in enumerate(lines)}
    solution_dict["FA"] = final_answer
    return json.dumps(solution_dict, indent=2)

def sanitize_equation_string(expression: str) -> str:
    if not isinstance(expression, str):
        return ""

    s = expression.strip()

    # Normalize common symbols
    s = s.replace('×', '*').replace('·', '*').replace('x', '*')

    # Convert percentages like '12%' -> '(12/100)'
    s = re.sub(r'(?<!\d)(\d+(?:\.\d+)?)\s*%', r'(\1/100)', s)

    # Simple paren balancing trims (only when a single stray exists at an edge)
    if s.count('(') > s.count(')') and s.startswith('('):
        s = s[1:]
    elif s.count(')') > s.count('(') and s.endswith(')'):
        s = s[:-1]

    # Drop units right after a slash: /hr, /dogs
    s = re.sub(r'/([a-zA-Z]+)', '', s)

    # Keep only numeric math tokens
    s = re.sub(r'[^\d.()+\-*/=%]', '', s)

    # Collapse repeated '=' (e.g., '==24/2=12' -> '=24/2=12')
    s = re.sub(r'=+', '=', s)

    return s

import re, math

def _parse_equation(eq_str: str):
    s = sanitize_equation_string(eq_str or "")
    s = s.lstrip('=')  # handle lines like '=24/2=12'
    if '=' not in s:
        return None
    if s.count('=') > 1:
        pos = s.rfind('=')
        lhs, rhs = s[:pos], s[pos+1:]
    else:
        lhs, rhs = s.split('=', 1)
    lhs, rhs = lhs.strip(), rhs.strip()
    if not lhs or not rhs:
        return None
    return lhs, rhs

def _abs_tol_from_display(rhs_str: str):
    """

    If RHS is a single numeric literal like 0.33, use half-ULP at that precision.

    e.g., '0.33' -> 0.5 * 10^-2 = 0.005

    Otherwise return None and fall back to base tolerances.

    """
    s = rhs_str.strip()
    # allow optional parens and sign
    m = re.fullmatch(r'\(?\s*[-+]?\d+(?:\.(\d+))?\s*\)?', s)
    if not m:
        return None
    frac = m.group(1) or ""
    d = len(frac)
    return 0.5 * (10 ** (-d)) if d > 0 else 0.5  # if integer shown, allow ±0.5

def evaluate_equations(eq_dict: dict, sol_dict: dict,

                       base_rel_tol: float = 1e-6,

                       base_abs_tol: float = 1e-9,

                       honor_display_precision: bool = True):
    """

    Evaluates extracted equations. Accepts rounded RHS values based on displayed precision.

    """
    for key, eq_str in (eq_dict or {}).items():
        parsed = _parse_equation(eq_str)
        if not parsed:
            continue
        lhs, rhs_str = parsed

        try:
            lhs_val = eval(lhs, {"__builtins__": None}, {})
            rhs_val = eval(rhs_str, {"__builtins__": None}, {})
        except Exception:
            continue

        # dynamic absolute tolerance from RHS formatting (e.g., 0.33 -> 0.005)
        abs_tol = base_abs_tol
        if honor_display_precision:
            dyn = _abs_tol_from_display(rhs_str)
            if dyn is not None:
                abs_tol = max(abs_tol, dyn)

        if not math.isclose(lhs_val, rhs_val, rel_tol=base_rel_tol, abs_tol=abs_tol):
            correct_rhs_val = round(lhs_val, 6)
            correct_rhs_str = f"{correct_rhs_val:.6f}".rstrip('0').rstrip('.')
            return {
                "error": True,
                "line_key": key,
                "line_text": sol_dict.get(key, "N/A"),
                "original_flawed_calc": eq_str,
                "sanitized_lhs": lhs,
                "original_rhs": rhs_str,
                "correct_rhs": correct_rhs_str,
            }

    return {"error": False}





def extract_json_from_response(response: str) -> dict:
    """

    Recover equations from the extractor's output.



    Strategy:

      1) Try to parse a real JSON object (if present).

      2) Parse relaxed key-value lines like 'L1: ...' or 'FA=...'.

      3) Also fall back to linewise equations (e.g., '=24/2=12', '7*2=14') and

         merge them as L1, L2, ... preserving order. Keep FA if present.

    """
    out = {}

    if not response or not isinstance(response, str):
        return out

    text = response.strip()

    # --- 1) strict JSON block, if any ---
    m = re.search(r'\{.*\}', text, flags=re.S)
    if m:
        try:
            obj = json.loads(m.group(0))
            if isinstance(obj, dict) and any(k.startswith("L") for k in obj):
                return obj
            elif isinstance(obj, dict):
                out.update(obj)  # keep FA etc., then continue
        except Exception:
            pass

    # --- 2) relaxed key/value lines: Lk : value   or   FA = value ---
    relaxed = {}
    for ln in text.splitlines():
        ln = ln.strip().strip(',')
        if not ln:
            continue
        m = re.match(r'(?i)^(L\d+|FA)\s*[:=]\s*(.+?)\s*$', ln)
        if m:
            k = m.group(1).strip()
            v = m.group(2).strip().rstrip(',')
            relaxed[k] = v
    out.update(relaxed)

    # Count how many L-keys we already have
    existing_L = sorted(
        int(k[1:]) for k in out.keys()
        if k.startswith("L") and k[1:].isdigit()
    )
    next_L = (max(existing_L) + 1) if existing_L else 1

    # --- 3) linewise fallback: harvest bare equations and merge ---
    def _looks_like_equation(s: str) -> str | None:
        s = sanitize_equation_string(s or "").lstrip('=')
        if '=' in s and any(ch.isdigit() for ch in s):
            return s
        return None

    # set of existing equation strings to avoid duplicates
    seen_vals = set(v for v in out.values() if isinstance(v, str))

    for ln in text.splitlines():
        ln = ln.strip().strip(',')
        if not ln or re.match(r'(?i)^(L\d+|FA)\s*[:=]', ln):
            # skip lines we already captured as relaxed pairs
            continue
        eq = _looks_like_equation(ln)
        if eq and eq not in seen_vals:
            out[f"L{next_L}"] = eq
            seen_vals.add(eq)
            next_L += 1

    return out

# --- Prompts ---
EXTRACTOR_SYSTEM_PROMPT = \
"""[ROLE]

You are an expert at parsing mathematical solutions.

[TASK]

You are given a mathematical solution. Your task is to extract the calculation performed on each line and represent it as a simple equation.

**This is a literal transcription task. Follow these rules with extreme precision:**

- **RULE 1: Transcribe EXACTLY.** Do not correct mathematical errors. If a line implies `2+2=5`, your output for that line must be `2+2=5`.

- **RULE 2: Isolate the Equation.** Your output must contain ONLY the equation. Do not include any surrounding text, units (like `/hour`), or currency symbols (like `$`).

- **RULE 3: Use Standard Operators.** Always use `*` for multiplication. Never use `x`.

[RESPONSE FORMAT]

Your response must be ONLY a single, valid JSON object, adhering strictly to these rules:

For each line of the solution, create a key-value pair.

- The key should be the line identifier (e.g., "L1", "L2", "FA" for the final answer line).

- The value should be the extracted equation string (e.g., "10+5=15").

- If a line contains no calculation, the value must be an empty string.

"""

CLASSIFIER_SYSTEM_PROMPT = \
"""You are a mathematics tutor.

You will be given a math word problem and a solution written by a student.

Carefully analyze the problem and solution LINE-BY-LINE and determine whether there are any errors in the solution."""

# --- Example 1 ---
FEW_SHOT_EXAMPLE_1_SOLUTION = {
  "L1": "2% of $90 is (2/100)*$90 = $1.8",
  "L2": "2% of $60 is (2/100)*$60 = $1.2",
  "L3": "The second transaction was reversed without the service charge so only a total of $90+$1.8+$1.2 = $39 was deducted from his account",
  "L4": "He will have a balance of $400-$39 = $361",
  "FA": "361"
}

FEW_SHOT_EXAMPLE_1_EQUATIONS = {
  "L1": "(2/100)*90=1.8",
  "L2": "(2/100)*60=1.2",
  "L3": "90+1.8+1.2=39",
  "L4": "400-39=361",
  "FA": ""
}


# --- Example 2 ---
FEW_SHOT_EXAMPLE_2_SOLUTION = {
  "L1": "She drinks 2 bottles a day and there are 24 bottles in a case so a case will last 24/2 = 12 days",
  "L2": "She needs enough to last her 240 days and 1 case will last her 12 days so she needs 240/12 = 20 cases",
  "L3": "Each case is on sale for $12.00 and she needs 20 cases so that's 12*20 = $240.00",
  "FA": "240"
}

FEW_SHOT_EXAMPLE_2_EQUATIONS = {
  "L1": "24/2=12",
  "L2": "240/12=20",
  "L3": "12*20=240.00",
  "FA": ""
}

def create_extractor_messages(solution_json_str: str) -> list:
    """

    Returns a list of dictionaries representing the conversation history for the prompt.

    """
    # Start with the constant few-shot examples defined globally
    messages = [
        {"role": "user", "content": f"{EXTRACTOR_SYSTEM_PROMPT}\n\n### Solution:\n{json.dumps(FEW_SHOT_EXAMPLE_1_SOLUTION, indent=2)}"},
        {"role": "assistant", "content": json.dumps(FEW_SHOT_EXAMPLE_1_EQUATIONS, indent=2)},
        {"role": "user", "content": f"### Solution:\n{json.dumps(FEW_SHOT_EXAMPLE_2_SOLUTION, indent=2)}"},
        {"role": "assistant", "content": json.dumps(FEW_SHOT_EXAMPLE_2_EQUATIONS, indent=2)},
    ]

    # Add the final user query to the end of the conversation
    final_user_prompt = f"### Solution:\n{solution_json_str}"
    messages.append({"role": "user", "content": final_user_prompt})

    return messages
        
gemma_model = None
gemma_tokenizer = None
classifier_model = None
classifier_tokenizer = None

def load_model():
    """Load your trained model here"""
    global gemma_model, gemma_tokenizer, classifier_model, classifier_tokenizer
    
    try:
        device = "cuda" if torch.cuda.is_available() else "cpu"

        # --- Model 1: Equation Extractor (Gemma-3 with Unsloth) ---
        extractor_adapter_repo = "arvindsuresh-math/gemma-3-1b-equation-extractor-lora"
        base_gemma_model = "unsloth/gemma-3-1b-it-unsloth-bnb-4bit"

        gemma_model, gemma_tokenizer = FastModel.from_pretrained(
            model_name=base_gemma_model,
            max_seq_length=2048,
            dtype=None,
            load_in_4bit=True,
        )

        # --- Gemma tokenizer hygiene (fix the right-padding warning) ---
        if gemma_tokenizer.pad_token is None:
            gemma_tokenizer.pad_token = gemma_tokenizer.eos_token
        gemma_tokenizer.padding_side = "left"   # align last tokens across the batch

        gemma_model = PeftModel.from_pretrained(gemma_model, extractor_adapter_repo)


        # --- Model 2: Conceptual Error Classifier (Phi-4) ---
        classifier_adapter_repo = "arvindsuresh-math/phi-4-error-binary-classifier"
        base_phi_model = "microsoft/Phi-4-mini-instruct"

        DTYPE = torch.bfloat16
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=DTYPE
            )
        classifier_backbone_base = AutoModelForCausalLM.from_pretrained(
            base_phi_model,
            quantization_config=quantization_config,
            device_map="auto",
            trust_remote_code=True,
            )

        classifier_tokenizer = AutoTokenizer.from_pretrained(
            base_phi_model,
            trust_remote_code=True
            )
        classifier_tokenizer.padding_side = "left"
        if classifier_tokenizer.pad_token is None:
            classifier_tokenizer.pad_token = classifier_tokenizer.eos_token

        classifier_backbone_peft = PeftModel.from_pretrained(
            classifier_backbone_base,
            classifier_adapter_repo
            )
        classifier_model = GPTSequenceClassifier(classifier_backbone_peft, num_labels=2)

        # Download and load the custom classifier head's state dictionary
        classifier_head_path = hf_hub_download(repo_id=classifier_adapter_repo, filename="classifier_head.pth")
        classifier_model.classifier.load_state_dict(torch.load(classifier_head_path, map_location=device))

        classifier_model.to(device)
        classifier_model = classifier_model.to(torch.bfloat16)

        classifier_model.eval() # Set model to evaluation mode  
        
        logger.info("Model loaded successfully")
        return "Model loaded successfully!"
        
    except Exception as e:
        logger.error(f"Error loading model: {e}")
        return f"Error loading model: {e}"

@spaces.GPU
def analyze_single(math_question: str, proposed_solution: str, debug: bool = False):
    """

    Single (question, solution) classifier.

    Stage 1: computational check via Gemma extraction + evaluator.

    Stage 2: conceptual/correct check via Phi-4 classifier.

    Returns: {"classification": "...", "confidence": "...", "explanation": "..."}

    """
    # -----------------------------
    # STAGE 1: COMPUTATIONAL CHECK
    # -----------------------------
    # 1) Format and extract equations
    solution_json_str = format_solution_into_json_str(proposed_solution)
    solution_dict = json.loads(solution_json_str)

    messages = create_extractor_messages(solution_json_str)
    prompt = gemma_tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

    inputs = gemma_tokenizer([prompt], return_tensors="pt").to(device)
    outputs = gemma_model.generate(
        **inputs,
        max_new_tokens=300,
        use_cache=True,
        pad_token_id=gemma_tokenizer.pad_token_id,
        do_sample=False,
        temperature=0.0,
    )

    extracted_text = gemma_tokenizer.batch_decode(
        outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True
    )[0]

    if debug:
        print("\n[Gemma raw output]\n", extracted_text)

    extracted_eq_dict = extract_json_from_response(extracted_text)

    # 2) Keep only lines that actually contain digits in the original text
    final_eq_to_eval = {
        k: v
        for k, v in extracted_eq_dict.items()
        if any(ch.isdigit() for ch in solution_dict.get(k, ""))
    }
    if debug:
        print("\n[Equations to evaluate]\n", json.dumps(final_eq_to_eval, indent=2))

    # 3) Evaluate
    computational_error = evaluate_equations(final_eq_to_eval, solution_dict)
    if computational_error.get("error"):
        lhs = computational_error["sanitized_lhs"]
        rhs = computational_error["original_rhs"]
        correct_rhs = computational_error["correct_rhs"]
        line_txt = computational_error.get("line_text", "")
        explanation = (
            "A computational error was found.\n"
            f'On line: "{line_txt}"\n'
            f"The student wrote '{lhs} = {rhs}', but the correct result of '{lhs}' is {correct_rhs}."
        )
        return {
            "classification": "Computational Error",
            "confidence": "100%",
            "explanation": explanation,
        }

    # --------------------------
    # STAGE 2: CONCEPTUAL CHECK
    # --------------------------
    input_text = (
        f"{CLASSIFIER_SYSTEM_PROMPT}\n\n"
        f"### Problem:\n{math_question}\n\n"
        f"### Answer:\n{proposed_solution}"
    )
    cls_inputs = classifier_tokenizer(
        input_text, return_tensors="pt", truncation=True, max_length=512
    ).to(device)

    with torch.no_grad():
        logits = classifier_model(**cls_inputs)["logits"]
        probs = torch.softmax(logits, dim=-1).squeeze()

    is_correct_prob = float(probs[0])
    is_flawed_prob  = float(probs[1])

    if debug:
        print("\n[Phi-4 logits]", logits.to(torch.float32).cpu().numpy())
        print("[Phi-4 probs] [Correct, Flawed]:", [is_correct_prob, is_flawed_prob])

    if is_flawed_prob > 0.5:
        return {
            "classification": "Conceptual Error",
            "confidence": f"{is_flawed_prob:.2%}",
            "explanation": "Logic or setup appears to have a conceptual error.",
        }
    else:
        return {
            "classification": "Correct",
            "confidence": f"{is_correct_prob:.2%}",
            "explanation": "Solution appears correct.",
        }



@spaces.GPU
def classify_solution(question: str, solution: str):
    """

    Classify the math solution

    Returns: (classification_label, confidence_score, explanation)

    """
    if not question.strip() or not solution.strip():
        return "Please fill in both fields", 0.0, ""
    
    if not model or not tokenizer:
        return "Model not loaded", 0.0, ""
    
    try:
        res = analyze_single(question, solution)
        
        return list(res.values())
        
        

# Load model on startup
load_model()

# Create Gradio interface
with gr.Blocks(title="Math Solution Classifier", theme=gr.themes.Soft()) as app:
    gr.Markdown("# 🧮 Math Solution Classifier")
    gr.Markdown("Classify math solutions as correct, conceptually flawed, or computationally flawed.")
    
    with gr.Row():
        with gr.Column():
            question_input = gr.Textbox(
                label="Math Question",
                placeholder="e.g., Solve for x: 2x + 5 = 13",
                lines=3
            )
            
            solution_input = gr.Textbox(
                label="Proposed Solution", 
                placeholder="e.g., 2x + 5 = 13\n2x = 13 - 5\n2x = 8\nx = 4",
                lines=5
            )
            
            classify_btn = gr.Button("Classify Solution", variant="primary")
        
        with gr.Column():
            classification_output = gr.Textbox(label="Classification", interactive=False)
            confidence_output = gr.Textbox(label="Confidence", interactive=False)
            explanation_output = gr.Textbox(label="Explanation", interactive=False, lines=3)
    
    # Examples
    gr.Examples(
        examples=[
            [
                "Solve for x: 2x + 5 = 13",
                "2x + 5 = 13\n2x = 13 - 5\n2x = 8\nx = 4"
            ],
            [
                "John has three apples and Mary has seven, how many apples do they have together?", 
                "They have 7 + 3 = 11 apples."  # This should be computationally flawed
            ],
            [
                "What is 15% of 200?",
                "15% = 15/100 = 0.15\n0.15 × 200 = 30"
            ]
        ],
        inputs=[question_input, solution_input]
    )
    
    classify_btn.click(
        fn=classify_solution,
        inputs=[question_input, solution_input],
        outputs=[classification_output, confidence_output, explanation_output]
    )

if __name__ == "__main__":
    app.launch()