Matthew Lee
lol
5e1fc5e
import gradio as gr
from transformers import pipeline
"""
For more information on `transformers` library, please check the docs: https://huggingface.co/docs/transformers/
"""
model_name = "BabyChou/Deepseek-R1-Distill-Qwen-1.5B-GSM8K-GRPO-beta-0.001"
chatbot = pipeline("text-generation", model=model_name)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
input_text = "\n".join([msg["content"] for msg in messages])
response = chatbot(
input_text,
max_length=max_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
)[0]["generated_text"]
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()