import gradio as gr import numpy as np import random import spaces #[uncomment to use ZeroGPU] from diffusers import DiffusionPipeline import torch import subprocess from groq import Groq import base64 import os subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True) # Load FLUX image generator device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "black-forest-labs/FLUX.1-schnell" # Replace to the model you would like to use lora_path = "matteomarjanovic/flatsketcher" weigths_file = "lora.safetensors" if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) pipe = pipe.to(device) pipe.load_lora_weights(lora_path, weight_name=weigths_file) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def encode_image(image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') # @spaces.GPU #[uncomment to use ZeroGPU] # def infer( # prompt, # progress=gr.Progress(track_tqdm=True), # ): # # seed = random.randint(0, MAX_SEED) # # generator = torch.Generator().manual_seed(seed) # image = pipe( # prompt=prompt, # guidance_scale=0., # num_inference_steps=4, # width=1420, # height=1080, # max_sequence_length=256, # ).images[0] # return image @spaces.GPU #[uncomment to use ZeroGPU] def generate_description_fn( image, progress=gr.Progress(track_tqdm=True), ): base64_image = encode_image(image) client = Groq( api_key=os.environ.get("GROQ_API_KEY"), ) chat_completion = client.chat.completions.create( messages=[ { "role": "user", "content": [ { "type": "text", "text": """ I want you to imagine how the technical flat sketch of the garment you see in the picture would look like, both front and back descriptions are mandatory, and describe it to me in rich details, in one paragraph. Don't add any additional comment. The style of the result should look somewhat like the following example: The technical flat sketch of the dress would depict a midi-length, off-the-shoulder design with a smocked bodice and short puff sleeves that have elasticized cuffs. The elastic neckline sits straight across the chest and back, ensuring a secure fit. The bodice transitions into a flowy, tiered skirt with three evenly spaced gathered panels, creating soft volume. The back view mirrors the front, maintaining the smocked fit and tiered skirt without visible closures, suggesting a pullover style. Elasticized areas would be marked with textured lines, while the gathers and drape would be indicated through subtle curved strokes, ensuring clarity in construction details. """ }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_image}", }, }, ], } ], model="llama-3.2-11b-vision-preview", ) prompt = chat_completion.choices[0].message.content + " In the style of FLTSKC" image = pipe( prompt=prompt, guidance_scale=0., num_inference_steps=4, width=1420, height=1080, max_sequence_length=256, ).images[0] return prompt, image css = """ #col-container { margin: 0 auto; max-width: 640px; } """ # generated_prompt = "" with gr.Blocks(css=css) as demo: # gr.Markdown("# Draptic: from garment image to technical flat sketch") with gr.Row(): with gr.Column(elem_id="col-input-image"): # gr.Markdown(" ## Drop your image here") input_image = gr.Image(type="filepath") with gr.Column(elem_id="col-container"): generate_button = gr.Button("Generate flat sketch", scale=0, variant="primary", elem_classes="btn btn-primary") result = gr.Image(label="Result", show_label=False) if result: gr.Markdown("## Description of the garment:") generated_prompt = gr.Markdown("") gr.on( triggers=[generate_button.click], fn=generate_description_fn, inputs=[ input_image, ], outputs=[generated_prompt, result], ) if __name__ == "__main__": demo.launch()