import gradio as gr import numpy as np import random import spaces #[uncomment to use ZeroGPU] from diffusers import DiffusionPipeline import torch import subprocess from groq import Groq import base64 subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True) # Load FLUX image generator device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "black-forest-labs/FLUX.1-schnell" # Replace to the model you would like to use lora_path = "matteomarjanovic/flatsketcher" weigths_file = "lora.safetensors" if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) pipe = pipe.to(device) pipe.load_lora_weights(lora_path, weight_name=weigths_file) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def encode_image(image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') @spaces.GPU #[uncomment to use ZeroGPU] def infer( prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=0., num_inference_steps=4, width=1420, height=1080, max_sequence_length=256, ).images[0] return image, seed @spaces.GPU #[uncomment to use ZeroGPU] def generate_description_fn( image, progress=gr.Progress(track_tqdm=True), ): base64_image = encode_image(image) client = Groq() chat_completion = client.chat.completions.create( messages=[ { "role": "user", "content": [ {"type": "text", "text": "What's in this image?"}, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_image}", }, }, ], } ], model="llama-3.2-11b-vision-preview", ) return chat_completion.choices[0].message.content examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ # generated_prompt = "" with gr.Blocks(css=css) as demo: with gr.Row(): with gr.Column(elem_id="col-input-image"): gr.Markdown(" # Drop your image here") input_image = gr.Image(type="filepath") generate_button = gr.Button("Generate", scale=0, variant="primary") generated_prompt = gr.Markdown("") with gr.Column(elem_id="col-container"): gr.Markdown(" # Text-to-Image Gradio Template") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # Replace with defaults that work for your model ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # Replace with defaults that work for your model ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0, # Replace with defaults that work for your model ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=2, # Replace with defaults that work for your model ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) gr.on( triggers=[generate_button.click], fn=generate_description_fn, inputs=[ input_image, ], outputs=[generated_prompt], ) if __name__ == "__main__": demo.launch()