File size: 6,183 Bytes
8d691c3
 
 
 
b79e3f7
8d691c3
 
a15d459
166d9fd
 
e221206
a15d459
 
8d691c3
21e5fc0
8d691c3
b79e3f7
 
 
8d691c3
 
 
 
 
 
 
 
b79e3f7
8d691c3
 
 
 
166d9fd
 
 
21e5fc0
8d691c3
21e5fc0
 
 
 
 
166d9fd
 
e221206
 
 
166d9fd
 
 
 
 
 
f792238
 
 
4fe873f
f792238
 
 
 
 
166d9fd
 
 
 
 
 
 
 
 
 
 
 
fd4ed34
 
 
 
 
 
 
 
 
 
 
 
 
21e5fc0
8d691c3
 
 
 
 
 
 
 
8749689
21e5fc0
8d691c3
5097863
36abcb2
 
406d9b2
166d9fd
36abcb2
406d9b2
8d691c3
36abcb2
5097863
66303da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21e5fc0
 
 
 
 
 
36abcb2
fd4ed34
36abcb2
8d691c3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gradio as gr
import numpy as np
import random

import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
import subprocess
from groq import Groq
import base64
import os

subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)

# Load FLUX image generator
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "black-forest-labs/FLUX.1-schnell"  # Replace to the model you would like to use
lora_path = "matteomarjanovic/flatsketcher"
weigths_file = "lora.safetensors"

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
pipe.load_lora_weights(lora_path, weight_name=weigths_file)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def encode_image(image_path):
  with open(image_path, "rb") as image_file:
    return base64.b64encode(image_file.read()).decode('utf-8')


@spaces.GPU #[uncomment to use ZeroGPU]
def generate_description_fn(
    image,
    progress=gr.Progress(track_tqdm=True),
):
    base64_image = encode_image(image)

    client = Groq(
        api_key=os.environ.get("GROQ_API_KEY"),
    )

    chat_completion = client.chat.completions.create(
        messages=[
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": """
                            I want you to imagine how the black and white technical flat sketch of the garment you see in the picture would look like, and describe that flat sketch to me in rich details, both front and back descriptions are mandatory. The description of the flat sketch should be one paragraph long and you don't have to add any additional comment.

                            The style of the result should look somewhat like the following example:
                            The technical flat sketch of the dress would depict a midi-length, off-the-shoulder design with a smocked bodice and short puff sleeves that have elasticized cuffs. The elastic neckline sits straight across the chest and back, ensuring a secure fit. The bodice transitions into a flowy, tiered skirt with three evenly spaced gathered panels, creating soft volume. The back view mirrors the front, maintaining the smocked fit and tiered skirt without visible closures, suggesting a pullover style. Elasticized areas would be marked with textured lines, while the gathers and drape would be indicated through subtle curved strokes, ensuring clarity in construction details.
                            """
                    },
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:image/jpeg;base64,{base64_image}",
                        },
                    },
                ],
            }
        ],
        model="llama-3.2-11b-vision-preview",
    )

    prompt = chat_completion.choices[0].message.content + " In the style of FLTSKC"

    image = pipe(
        prompt=prompt,
        guidance_scale=0.,
        num_inference_steps=4,
        width=1420,
        height=1080,
        max_sequence_length=256,
        
    ).images[0]

    return prompt, image


css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

# generated_prompt = ""

with gr.Blocks(css=css) as demo:
    gr.Markdown("# Draptic: from garment image to technical flat sketch")
    with gr.Row():
        with gr.Column(elem_id="col-input-image"):
            gr.Markdown(" ## Drop your image here")
            input_image = gr.Image(type="filepath")
        with gr.Column(elem_id="col-container"):
            generate_button = gr.Button("Generate flat sketch", scale=0, variant="primary")

            result = gr.Image(label="Result", show_label=False)

            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=1,
                    placeholder="Enter a negative prompt",
                    visible=False,
                )

                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )

                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                with gr.Row():
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,  # Replace with defaults that work for your model
                    )

                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,  # Replace with defaults that work for your model
                    )

                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=0.0,  # Replace with defaults that work for your model
                    )

                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=1,
                        maximum=50,
                        step=1,
                        value=2,  # Replace with defaults that work for your model
                    )

            gr.Examples(examples=examples, inputs=[prompt])

        gr.on(
            triggers=[generate_button.click],
            fn=generate_description_fn,
            inputs=[
                input_image,
            ],
            outputs=[generated_prompt, result],
        )

if __name__ == "__main__":
    demo.launch()