from pathlib import Path
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import requests
import SimpleITK as sitk # noqa: N813
import spaces
import torch
from cinema import CineMA, ConvUNetR, ConvViT, heatmap_soft_argmax
from cinema.examples.cine_cmr import plot_cmr_views
from cinema.examples.inference.landmark_heatmap import (
plot_heatmap_and_landmarks,
plot_landmarks,
plot_lv,
)
from cinema.examples.inference.mae import plot_mae_reconstruction, reconstruct_images
from cinema.examples.inference.segmentation_lax_4c import (
plot_segmentations as plot_segmentations_lax,
)
from cinema.examples.inference.segmentation_lax_4c import (
plot_volume_changes as plot_volume_changes_lax,
)
from cinema.examples.inference.segmentation_lax_4c import (
post_process as post_process_lax_segmentation,
)
from cinema.examples.inference.segmentation_sax import (
plot_segmentations as plot_segmentations_sax,
)
from cinema.examples.inference.segmentation_sax import (
plot_volume_changes as plot_volume_changes_sax,
)
from huggingface_hub import hf_hub_download
from monai.transforms import Compose, ScaleIntensityd, SpatialPadd
from tqdm import tqdm
# cache directories
cache_dir = Path(__file__).parent
cache_dir.mkdir(parents=True, exist_ok=True)
# set device and dtype
dtype, device = torch.float32, torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda")
if torch.cuda.is_bf16_supported():
dtype = torch.bfloat16
# Create the Gradio interface
theme = gr.themes.Ocean(
primary_hue="red",
secondary_hue="purple",
)
def load_nifti_from_github(name: str) -> sitk.Image:
path = cache_dir / name
if not path.exists():
image_url = f"https://raw.githubusercontent.com/mathpluscode/CineMA/main/cinema/examples/data/{name}"
response = requests.get(image_url)
path.parent.mkdir(parents=True, exist_ok=True)
with open(path, "wb") as f:
f.write(response.content)
return sitk.ReadImage(path)
def cmr_tab():
with gr.Blocks() as cmr_interface:
gr.Markdown(
"""
This page illustrates the spatial orientation of short-axis (SAX) and long-axis (LAX) views in 3D.
"""
)
with gr.Row():
with gr.Column(scale=5):
gr.Markdown("## Views")
cmr_plot = gr.Plot(show_label=False)
with gr.Column(scale=3):
gr.Markdown("## Data Settings")
image_id = gr.Slider(
minimum=1,
maximum=4,
step=1,
label="Choose an image",
value=2,
)
# Placeholder for slice slider, will update dynamically
slice_idx = gr.Slider(
minimum=0,
maximum=8,
step=1,
label="SAX slice to visualize",
value=1,
)
def get_num_slices(image_id):
sax_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_sax.nii.gz")
return sax_image.GetSize()[2]
def update_slice_slider(image_id):
num_slices = get_num_slices(image_id)
return gr.update(maximum=num_slices - 1, value=1, visible=True)
def fn(image_id, slice_idx):
lax_2c_image = load_nifti_from_github(
f"ukb/{image_id}/{image_id}_lax_2c.nii.gz"
)
lax_3c_image = load_nifti_from_github(
f"ukb/{image_id}/{image_id}_lax_3c.nii.gz"
)
lax_4c_image = load_nifti_from_github(
f"ukb/{image_id}/{image_id}_lax_4c.nii.gz"
)
sax_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_sax.nii.gz")
fig = plot_cmr_views(
lax_2c_image,
lax_3c_image,
lax_4c_image,
sax_image,
t_to_show=4,
depth_to_show=slice_idx,
)
fig.update_layout(height=600)
return fig
# When image changes, update the slice slider and plot
gr.on(
fn=lambda image_id: [update_slice_slider(image_id), fn(image_id, 1)],
inputs=[image_id],
outputs=[slice_idx, cmr_plot],
)
# When slice changes, update the plot
slice_idx.change(
fn=fn,
inputs=[image_id, slice_idx],
outputs=[cmr_plot],
)
return cmr_interface
@spaces.GPU
def mae_inference(
batch: dict[str, torch.Tensor],
transform: Compose,
model: CineMA,
mask_ratio: float,
) -> tuple[dict[str, np.ndarray], dict[str, np.ndarray], dict[str, np.ndarray]]:
model.to(device)
sax_slices = batch["sax"].shape[-1]
batch = transform(batch)
batch = {k: v[None, ...].to(device=device, dtype=dtype) for k, v in batch.items()}
with (
torch.no_grad(),
torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
):
_, pred_dict, enc_mask_dict, _ = model(batch, enc_mask_ratio=mask_ratio)
grid_size_dict = {
k: v.patch_embed.grid_size for k, v in model.enc_down_dict.items()
}
reconstructed_dict, masks_dict = reconstruct_images(
batch,
pred_dict,
enc_mask_dict,
model.dec_patch_size_dict,
grid_size_dict,
sax_slices,
)
batch = {
k: v.detach().to(torch.float32).cpu().numpy()[0, 0]
for k, v in batch.items()
}
batch["sax"] = batch["sax"][..., :sax_slices]
return batch, reconstructed_dict, masks_dict
def mae(image_id, mask_ratio, progress=gr.Progress()):
# Create file path for saving MAE reconstruction plot
mae_path = cache_dir / f"mae_image{image_id}_mask{mask_ratio * 100:.0f}.png"
# Check if result already exists
if mae_path.exists():
progress(1, desc="Loading cached result...")
return str(mae_path)
t = 4 # which time frame to use
progress(0, desc="Downloading model...")
model = CineMA.from_pretrained()
model.eval()
progress(0, desc="Downloading data...")
lax_2c_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_lax_2c.nii.gz")
lax_3c_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_lax_3c.nii.gz")
lax_4c_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_lax_4c.nii.gz")
sax_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_sax.nii.gz")
transform = Compose(
[
ScaleIntensityd(keys=("sax", "lax_2c", "lax_3c", "lax_4c")),
SpatialPadd(keys="sax", spatial_size=(192, 192, 16), method="end"),
SpatialPadd(
keys=("lax_2c", "lax_3c", "lax_4c"),
spatial_size=(256, 256),
method="end",
),
]
)
lax_2c_image_np = np.transpose(sitk.GetArrayFromImage(lax_2c_image))
lax_3c_image_np = np.transpose(sitk.GetArrayFromImage(lax_3c_image))
lax_4c_image_np = np.transpose(sitk.GetArrayFromImage(lax_4c_image))
sax_image_np = np.transpose(sitk.GetArrayFromImage(sax_image))
image_dict = {
"sax": sax_image_np[None, ..., t],
"lax_2c": lax_2c_image_np[None, ..., 0, t],
"lax_3c": lax_3c_image_np[None, ..., 0, t],
"lax_4c": lax_4c_image_np[None, ..., 0, t],
}
batch = {k: torch.from_numpy(v) for k, v in image_dict.items()}
progress(0.5, desc="Running inference...")
batch, reconstructed_dict, masks_dict = mae_inference(
batch, transform, model, mask_ratio
)
progress(1, desc="Inference finished. Plotting ...")
# (y, x, z) -> (x, y, z)
batch["sax"] = np.transpose(batch["sax"], (1, 0, 2))
reconstructed_dict["sax"] = np.transpose(reconstructed_dict["sax"], (1, 0, 2))
masks_dict["sax"] = np.transpose(masks_dict["sax"], (1, 0, 2))
# Plot MAE reconstruction and save to file
plot_mae_reconstruction(batch, reconstructed_dict, masks_dict, mae_path)
return str(mae_path)
def mae_tab():
with gr.Blocks() as mae_interface:
gr.Markdown(
"""
This page demonstrates the masking and reconstruction process. The model was trained with a mask ratio of 0.75. Click the button below to launch the inference. ⬇️
"""
)
run_button = gr.Button("Launch reconstruction", variant="primary")
with gr.Row():
with gr.Column(scale=5):
gr.Markdown("## Reconstruction")
plot = gr.Image(
show_label=False,
type="filepath",
label="Masked Autoencoder Reconstruction",
)
with gr.Column(scale=5):
gr.Markdown("## Data Settings")
image_id = gr.Slider(
minimum=1,
maximum=4,
step=1,
label="Choose an image",
value=2,
)
mask_ratio = gr.Slider(
minimum=0.05,
maximum=1,
step=0.05,
label="Mask ratio",
value=0.75,
)
run_button.click(
fn=mae,
inputs=[image_id, mask_ratio],
outputs=[plot],
)
return mae_interface
@spaces.GPU
def segmentation_sax_inference(
images: torch.Tensor,
view: str,
transform: Compose,
model: ConvUNetR,
progress: gr.Progress,
) -> np.ndarray:
model.to(device)
n_slices, n_frames = images.shape[-2:]
labels_list = []
for t in tqdm(range(0, n_frames), total=n_frames):
progress((t + 1) / n_frames, desc=f"Processing frame {t + 1} / {n_frames}...")
batch = transform({view: torch.from_numpy(images[None, ..., t])})
batch = {
k: v[None, ...].to(device=device, dtype=torch.float32)
for k, v in batch.items()
}
with (
torch.no_grad(),
torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
):
logits = model(batch)[view]
labels_list.append(torch.argmax(logits, dim=1)[0, ..., :n_slices])
labels = torch.stack(labels_list, dim=-1).detach().to(torch.float32).cpu().numpy()
return labels
def segmentation_sax(trained_dataset, seed, image_id, t_step, progress=gr.Progress()):
# Create file paths for saving plots
seg_path = (
cache_dir
/ f"sax_segmentation_{trained_dataset}_image{image_id}_seed{seed}_tstep{t_step}.gif"
)
vol_path = (
cache_dir
/ f"sax_volume_{trained_dataset}_image{image_id}_seed{seed}_tstep{t_step}.png"
)
# Check if results already exist
if seg_path.exists() and vol_path.exists():
progress(1, desc="Loading cached results...")
return (str(seg_path), str(vol_path))
# Fixed parameters
view = "sax"
split = "train" if image_id <= 100 else "test"
trained_dataset = {
"ACDC": "acdc",
"M&MS": "mnms",
"M&MS2": "mnms2",
}[str(trained_dataset)]
# Download and load model
progress(0, desc="Downloading model...")
image_path = hf_hub_download(
repo_id="mathpluscode/ACDC",
repo_type="dataset",
filename=f"{split}/patient{image_id:03d}/patient{image_id:03d}_sax_t.nii.gz",
cache_dir=cache_dir,
)
model = ConvUNetR.from_finetuned(
repo_id="mathpluscode/CineMA",
model_filename=f"finetuned/segmentation/{trained_dataset}_{view}/{trained_dataset}_{view}_{seed}.safetensors",
config_filename=f"finetuned/segmentation/{trained_dataset}_{view}/config.yaml",
cache_dir=cache_dir,
)
model.eval()
# Inference
progress(0, desc="Downloading data...")
transform = Compose(
[
ScaleIntensityd(keys=view),
SpatialPadd(keys=view, spatial_size=(192, 192, 16), method="end"),
]
)
images = np.transpose(sitk.GetArrayFromImage(sitk.ReadImage(image_path)))
images = images[..., ::t_step]
labels = segmentation_sax_inference(images, view, transform, model, progress)
# (y, x, z, t) -> (x, y, z, t)
images = np.transpose(images, (1, 0, 2, 3))
labels = np.transpose(labels, (1, 0, 2, 3))
progress(1, desc="Inference finished. Plotting ...")
# Plot segmentations and volume changes with file paths
plot_segmentations_sax(images, labels, t_step, seg_path)
plot_volume_changes_sax(labels, t_step, vol_path)
return (str(seg_path), str(vol_path))
def segmentation_sax_tab():
with gr.Blocks() as sax_interface:
gr.Markdown(
"""
This page demonstrates the segmentation of cardiac structures in the short-axis (SAX) view. Click the button below to launch the inference. ⬇️
"""
)
run_button = gr.Button("Launch segmentation inference", variant="primary")
with gr.Row():
with gr.Column(scale=4):
gr.Markdown("""
## Description
### Data
Images 101–150 are from the test set of [ACDC](https://www.creatis.insa-lyon.fr/Challenge/acdc/).
### Model
The available models are finetuned on different datasets ([ACDC](https://www.creatis.insa-lyon.fr/Challenge/acdc/), [M&Ms](https://www.ub.edu/mnms/), and [M&Ms2](https://www.ub.edu/mnms-2/)). For each dataset, there are three models finetuned with seeds: 0, 1, 2.
""")
with gr.Column(scale=6):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Data Settings")
image_id = gr.Slider(
minimum=101,
maximum=150,
step=1,
label="Choose an image",
value=150,
)
t_step = gr.Slider(
minimum=1,
maximum=10,
step=1,
label="Choose the gap between time frames",
value=3,
)
with gr.Column(scale=1):
gr.Markdown("## Model Settings")
trained_dataset = gr.Dropdown(
choices=["ACDC", "M&MS", "M&MS2"],
label="Choose which dataset the model was finetuned on",
value="ACDC",
)
seed = gr.Slider(
minimum=0,
maximum=2,
step=1,
label="Choose which seed the finetuning used",
value=1,
)
# Visualisation description block
gr.Markdown("""
## Visualisation
The left figure shows the segmentation at every n time step across all SAX slices.
The right figure shows the volumes across time frames and estimates the ejection fraction (EF) for the left ventricle (LV) and right ventricle (RV).
""")
with gr.Row():
with gr.Column():
segmentation_gif = gr.Image(
show_label=True,
type="filepath",
label="Ventricle and Myocardium Segmentation",
)
with gr.Column():
volume_plot = gr.Image(
show_label=True,
type="filepath",
label="Ejection Fraction Estimation",
)
run_button.click(
fn=segmentation_sax,
inputs=[trained_dataset, seed, image_id, t_step],
outputs=[segmentation_gif, volume_plot],
)
return sax_interface
@spaces.GPU
def segmentation_lax_inference(
images: torch.Tensor,
view: str,
transform: Compose,
model: ConvUNetR,
progress: gr.Progress,
) -> np.ndarray:
model.to(device)
n_frames = images.shape[-1]
labels_list = []
for t in tqdm(range(n_frames), total=n_frames):
progress((t + 1) / n_frames, desc=f"Processing frame {t + 1} / {n_frames}...")
batch = transform({view: torch.from_numpy(images[None, ..., 0, t])})
batch = {
k: v[None, ...].to(device=device, dtype=dtype) for k, v in batch.items()
}
with (
torch.no_grad(),
torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
):
logits = model(batch)[view] # (1, 4, x, y)
labels = (
torch.argmax(logits, dim=1)[0].detach().to(torch.float32).cpu().numpy()
) # (x, y)
# the model seems to hallucinate an additional right ventricle and myocardium sometimes
# find the connected component that is closest to left ventricle
labels = post_process_lax_segmentation(labels)
labels_list.append(labels)
labels = np.stack(labels_list, axis=-1) # (x, y, t)
return labels
def segmentation_lax(seed, image_id, progress=gr.Progress()):
# Create file paths for saving plots
seg_path = cache_dir / f"lax_segmentation_image{image_id}_seed{seed}.gif"
vol_path = cache_dir / f"lax_volume_image{image_id}_seed{seed}.png"
# Check if results already exist
if seg_path.exists() and vol_path.exists():
progress(1, desc="Loading cached results...")
return (str(seg_path), str(vol_path))
# Fixed parameters
trained_dataset = "mnms2"
view = "lax_4c"
# Download and load model
progress(0, desc="Downloading model...")
model = ConvUNetR.from_finetuned(
repo_id="mathpluscode/CineMA",
model_filename=f"finetuned/segmentation/{trained_dataset}_{view}/{trained_dataset}_{view}_{seed}.safetensors",
config_filename=f"finetuned/segmentation/{trained_dataset}_{view}/config.yaml",
cache_dir=cache_dir,
)
model.eval()
# Inference
progress(0, desc="Downloading data...")
transform = ScaleIntensityd(keys=view)
images = np.transpose(
sitk.GetArrayFromImage(
load_nifti_from_github(f"ukb/{image_id}/{image_id}_{view}.nii.gz")
)
)
labels = segmentation_lax_inference(images, view, transform, model, progress)
progress(1, desc="Inference finished. Plotting ...")
# Plot segmentations and save as GIF
plot_segmentations_lax(images, labels, seg_path)
# Plot volume changes and save as figure
plot_volume_changes_lax(labels, vol_path)
return (str(seg_path), str(vol_path))
def segmentation_lax_tab():
with gr.Blocks() as lax_interface:
gr.Markdown(
"""
This page demonstrates the segmentation of cardiac structures in the long-axis (LAX) four-chamber (4C) view. Click the button below to launch the inference. ⬇️
"""
)
run_button = gr.Button("Launch segmentation inference", variant="primary")
with gr.Row():
with gr.Column(scale=4):
gr.Markdown("""
## Description
### Data
There are four example images from the UK Biobank. Models were not trained supervisedly on these images.
### Model
The available models are finetuned on [M&Ms2](https://www.ub.edu/mnms-2/). There are three models finetuned with seeds: 0, 1, 2.
""")
with gr.Column(scale=6):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Data Settings")
image_id = gr.Slider(
minimum=1,
maximum=4,
step=1,
label="Choose an image",
value=2,
)
with gr.Column(scale=1):
gr.Markdown("## Model Settings")
seed = gr.Slider(
minimum=0,
maximum=2,
step=1,
label="Choose which seed the finetuning used",
value=1,
)
# Visualisation description block
gr.Markdown("""
## Visualisation
The left figure shows the segmentation across time frames.
The right figure shows the volumes across time frames and estimates the ejection fraction (EF).
""")
with gr.Row():
with gr.Column():
segmentation_gif = gr.Image(
show_label=True,
type="filepath",
label="Ventricle and Myocardium Segmentation",
)
with gr.Column():
volume_plot = gr.Image(
show_label=True,
type="filepath",
label="Ejection Fraction Prediction",
)
run_button.click(
fn=segmentation_lax,
inputs=[seed, image_id],
outputs=[segmentation_gif, volume_plot],
)
return lax_interface
@spaces.GPU
def landmark_heatmap_inference(
images: torch.Tensor,
view: str,
transform: Compose,
model: ConvUNetR,
progress: gr.Progress,
) -> tuple[np.ndarray, np.ndarray]:
model.to(device)
n_frames = images.shape[-1]
probs_list = []
coords_list = []
for t in tqdm(range(n_frames), total=n_frames):
progress((t + 1) / n_frames, desc=f"Processing frame {t + 1} / {n_frames}...")
batch = transform({view: torch.from_numpy(images[None, ..., 0, t])})
batch = {
k: v[None, ...].to(device=device, dtype=dtype) for k, v in batch.items()
}
with (
torch.no_grad(),
torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
):
logits = model(batch)[view] # (1, 3, x, y)
probs = torch.sigmoid(logits) # (1, 3, width, height)
probs_list.append(probs[0].detach().to(torch.float32).cpu().numpy())
coords = heatmap_soft_argmax(probs)[0].detach().to(torch.float32).cpu().numpy()
coords = [int(x) for x in coords]
coords_list.append(coords)
probs = np.stack(probs_list, axis=-1) # (3, x, y, t)
coords = np.stack(coords_list, axis=-1) # (6, t)
return probs, coords
@spaces.GPU
def landmark_coordinate_inference(
images: torch.Tensor,
view: str,
transform: Compose,
model: ConvViT,
progress: gr.Progress,
) -> np.ndarray:
model.to(device)
w, h, _, n_frames = images.shape
coords_list = []
for t in tqdm(range(n_frames), total=n_frames):
progress((t + 1) / n_frames, desc=f"Processing frame {t + 1} / {n_frames}...")
batch = transform({view: torch.from_numpy(images[None, ..., 0, t])})
batch = {
k: v[None, ...].to(device=device, dtype=dtype) for k, v in batch.items()
}
with (
torch.no_grad(),
torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
):
coords = model(batch)[0].detach().to(torch.float32).cpu().numpy() # (6,)
coords *= np.array([w, h, w, h, w, h])
coords = [int(x) for x in coords]
coords_list.append(coords)
coords = np.stack(coords_list, axis=-1) # (6, t)
return coords
def landmark(image_id, view, method, seed, progress=gr.Progress()):
view = "lax_2c" if view == "LAX 2C" else "lax_4c"
method = method.lower()
# Create file paths for saving plots
landmark_path = (
cache_dir / f"landmark_{view}_image{image_id}_{method}_seed{seed}.gif"
)
lv_path = cache_dir / f"lv_{view}_image{image_id}_{method}_seed{seed}.png"
# Check if results already exist
if landmark_path.exists() and lv_path.exists():
progress(1, desc="Loading cached results...")
return (str(landmark_path), str(lv_path))
# Download and load model
progress(0, desc="Downloading model...")
if method == "heatmap":
model = ConvUNetR.from_finetuned(
repo_id="mathpluscode/CineMA",
model_filename=f"finetuned/landmark_{method}/{view}/{view}_{seed}.safetensors",
config_filename=f"finetuned/landmark_{method}/{view}/config.yaml",
cache_dir=cache_dir,
)
elif method == "coordinate":
model = ConvViT.from_finetuned(
repo_id="mathpluscode/CineMA",
model_filename=f"finetuned/landmark_{method}/{view}/{view}_{seed}.safetensors",
config_filename=f"finetuned/landmark_{method}/{view}/config.yaml",
cache_dir=cache_dir,
)
else:
raise ValueError(f"Invalid method: {method}")
model.eval()
# Inference
progress(0, desc="Downloading data...")
transform = ScaleIntensityd(keys=view)
images = np.transpose(
sitk.GetArrayFromImage(
load_nifti_from_github(f"ukb/{image_id}/{image_id}_{view}.nii.gz")
)
)
if method == "heatmap":
probs, coords = landmark_heatmap_inference(
images, view, transform, model, progress
)
progress(1, desc="Inference finished. Plotting ...")
plot_heatmap_and_landmarks(images, probs, coords, landmark_path)
elif method == "coordinate":
coords = landmark_coordinate_inference(images, view, transform, model, progress)
progress(1, desc="Inference finished. Plotting ...")
plot_landmarks(images, coords, landmark_path)
else:
raise ValueError(f"Invalid method: {method}")
# Plot LV change in PNG
plot_lv(coords, lv_path)
return (str(landmark_path), str(lv_path))
def landmark_tab():
with gr.Blocks() as landmark_interface:
gr.Markdown(
"""
This page demonstrates landmark localisation in the long-axis (LAX) two-chamber (2C) and four-chamber (4C) views. Click the button below to launch the inference. ⬇️
"""
)
run_button = gr.Button(
"Launch landmark localisation inference", variant="primary"
)
with gr.Row():
with gr.Column(scale=4):
gr.Markdown("""
## Description
### Data
There are four example images from the UK Biobank. Models were not trained supervisedly on these images.
### Model
The available models are finetuned on data from [Xue et al.](https://pubs.rsna.org/doi/10.1148/ryai.2021200197)
There are two types of landmark localisation models:
- **Heatmap**: predicts dense probability maps of landmarks (more accurate)
- **Coordinate**: predicts landmark coordinates directly
For each type, there are three models finetuned with seeds: 0, 1, 2.
""")
with gr.Column(scale=6):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Data Settings")
image_id = gr.Slider(
minimum=1,
maximum=4,
step=1,
label="Choose an image",
value=2,
)
view = gr.Dropdown(
choices=["LAX 2C", "LAX 4C"],
label="Choose which view to localise the landmarks",
value="LAX 2C",
)
with gr.Column(scale=1):
gr.Markdown("## Model Settings")
method = gr.Dropdown(
choices=["Heatmap", "Coordinate"],
label="Choose which method to use",
value="Heatmap",
)
seed = gr.Slider(
minimum=0,
maximum=2,
step=1,
label="Choose which seed the finetuning used",
value=1,
)
# Visualisation description block
gr.Markdown("""
## Visualisation
The left figure shows the landmark positions across time frames.
The right figure shows the length of the left ventricle across time frames and estimates mitral annular plane systolic excursion (MAPSE) and global longitudinal shortening (GLS).
""")
with gr.Row():
with gr.Column():
landmark_gif = gr.Image(
show_label=True,
type="filepath",
label="Landmark Localisation",
)
with gr.Column():
lv_plot = gr.Image(
show_label=True,
type="filepath",
label="Left Ventricle Length Estimation",
)
run_button.click(
fn=landmark,
inputs=[image_id, view, method, seed],
outputs=[landmark_gif, lv_plot],
)
return landmark_interface
with gr.Blocks(
theme=theme, title="CineMA: A Foundation Model for Cine Cardiac MRI"
) as demo:
gr.Markdown(
"""
# CineMA: A Foundation Model for Cine Cardiac MRI 🎥🫀
🚀 The following demonstrations showcase the capabilities of CineMA in multiple tasks. Click the button to launch the inference.
⏱️ The examples may take 10-60 seconds, if not cached, to download data and model, perform inference, and render plots.
🔗 For more details, check out our [manuscript](https://arxiv.org/abs/2506.00679) and [GitHub repository](https://github.com/mathpluscode/CineMA).
"""
)
with gr.Tabs(selected="sax_seg") as tabs:
with gr.TabItem("🖼️ Cine CMR Views", id="cmr"):
cmr_tab()
with gr.TabItem("🧩 Masked Autoencoder", id="mae"):
mae_tab()
with gr.TabItem("✂️ Segmentation in SAX View", id="sax_seg"):
segmentation_sax_tab()
with gr.TabItem("✂️ Segmentation in LAX 4C View", id="lax_seg"):
segmentation_lax_tab()
with gr.TabItem("📍 Landmark Localisation in LAX 2C/4C View", id="landmark"):
landmark_tab()
demo.launch(allowed_paths=[cache_dir])