Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
5826e7f
1
Parent(s):
2e9f7e2
Change default tab
Browse files
app.py
CHANGED
@@ -34,7 +34,7 @@ from monai.transforms import Compose, ScaleIntensityd, SpatialPadd
|
|
34 |
from tqdm import tqdm
|
35 |
|
36 |
# cache directories
|
37 |
-
cache_dir = Path(
|
38 |
cache_dir.mkdir(parents=True, exist_ok=True)
|
39 |
|
40 |
|
@@ -282,7 +282,7 @@ def segmentation_sax_inference(
|
|
282 |
view: str,
|
283 |
transform: Compose,
|
284 |
model: ConvUNetR,
|
285 |
-
progress
|
286 |
) -> np.ndarray:
|
287 |
model.to(device)
|
288 |
n_slices, n_frames = images.shape[-2:]
|
@@ -457,7 +457,7 @@ def segmentation_lax_inference(
|
|
457 |
view: str,
|
458 |
transform: Compose,
|
459 |
model: ConvUNetR,
|
460 |
-
progress
|
461 |
) -> np.ndarray:
|
462 |
model.to(device)
|
463 |
n_frames = images.shape[-1]
|
@@ -604,7 +604,7 @@ def landmark_heatmap_inference(
|
|
604 |
view: str,
|
605 |
transform: Compose,
|
606 |
model: ConvUNetR,
|
607 |
-
progress
|
608 |
) -> tuple[np.ndarray, np.ndarray]:
|
609 |
model.to(device)
|
610 |
|
@@ -638,7 +638,7 @@ def landmark_coordinate_inference(
|
|
638 |
view: str,
|
639 |
transform: Compose,
|
640 |
model: ConvViT,
|
641 |
-
progress
|
642 |
) -> np.ndarray:
|
643 |
model.to(device)
|
644 |
|
@@ -822,7 +822,7 @@ with gr.Blocks(
|
|
822 |
"""
|
823 |
)
|
824 |
|
825 |
-
with gr.Tabs(selected="
|
826 |
with gr.TabItem("🖼️ Cine CMR Views", id="cmr"):
|
827 |
cmr_tab()
|
828 |
with gr.TabItem("🧩 Masked Autoencoder", id="mae"):
|
|
|
34 |
from tqdm import tqdm
|
35 |
|
36 |
# cache directories
|
37 |
+
cache_dir = Path(__file__).parent
|
38 |
cache_dir.mkdir(parents=True, exist_ok=True)
|
39 |
|
40 |
|
|
|
282 |
view: str,
|
283 |
transform: Compose,
|
284 |
model: ConvUNetR,
|
285 |
+
progress: gr.Progress,
|
286 |
) -> np.ndarray:
|
287 |
model.to(device)
|
288 |
n_slices, n_frames = images.shape[-2:]
|
|
|
457 |
view: str,
|
458 |
transform: Compose,
|
459 |
model: ConvUNetR,
|
460 |
+
progress: gr.Progress,
|
461 |
) -> np.ndarray:
|
462 |
model.to(device)
|
463 |
n_frames = images.shape[-1]
|
|
|
604 |
view: str,
|
605 |
transform: Compose,
|
606 |
model: ConvUNetR,
|
607 |
+
progress: gr.Progress,
|
608 |
) -> tuple[np.ndarray, np.ndarray]:
|
609 |
model.to(device)
|
610 |
|
|
|
638 |
view: str,
|
639 |
transform: Compose,
|
640 |
model: ConvViT,
|
641 |
+
progress: gr.Progress,
|
642 |
) -> np.ndarray:
|
643 |
model.to(device)
|
644 |
|
|
|
822 |
"""
|
823 |
)
|
824 |
|
825 |
+
with gr.Tabs(selected="sax_seg") as tabs:
|
826 |
with gr.TabItem("🖼️ Cine CMR Views", id="cmr"):
|
827 |
cmr_tab()
|
828 |
with gr.TabItem("🧩 Masked Autoencoder", id="mae"):
|