CineMA / app.py
mathpluscode's picture
Add MAE tab
7f9c492
raw
history blame
19.7 kB
from pathlib import Path
import gradio as gr
import numpy as np
import requests
import SimpleITK as sitk # noqa: N813
import spaces
import torch
from cinema import CineMA, ConvUNetR
from cinema.examples.cine_cmr import plot_cmr_views
from cinema.examples.inference.mae import plot_mae_reconstruction, reconstruct_images
from cinema.examples.inference.segmentation_lax_4c import (
plot_segmentations as plot_segmentations_lax,
)
from cinema.examples.inference.segmentation_lax_4c import (
plot_volume_changes as plot_volume_changes_lax,
)
from cinema.examples.inference.segmentation_lax_4c import (
post_process as post_process_lax_segmentation,
)
from cinema.examples.inference.segmentation_sax import (
plot_segmentations as plot_segmentations_sax,
)
from cinema.examples.inference.segmentation_sax import (
plot_volume_changes as plot_volume_changes_sax,
)
from huggingface_hub import hf_hub_download
from monai.transforms import Compose, ScaleIntensityd, SpatialPadd
from tqdm import tqdm
# cache directories
cache_dir = Path("/tmp/.cinema")
cache_dir.mkdir(parents=True, exist_ok=True)
# set device and dtype
dtype, device = torch.float32, torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda")
if torch.cuda.is_bf16_supported():
dtype = torch.bfloat16
# Create the Gradio interface
theme = gr.themes.Ocean(
primary_hue="red",
secondary_hue="purple",
)
def load_nifti_from_github(name: str) -> sitk.Image:
path = cache_dir / name
if not path.exists():
image_url = f"https://raw.githubusercontent.com/mathpluscode/CineMA/main/cinema/examples/data/{name}"
response = requests.get(image_url)
path.parent.mkdir(parents=True, exist_ok=True)
with open(path, "wb") as f:
f.write(response.content)
return sitk.ReadImage(path)
def cmr_tab():
with gr.Blocks() as cmr_interface:
gr.Markdown(
"""
This page illustrates the spatial orientation of short-axis (SAX) and long-axis (LAX) views in 3D. Use the control panels on the right to select specific images and slices.
"""
)
with gr.Row():
with gr.Column(scale=5):
gr.Markdown("## Views")
cmr_plot = gr.Plot(show_label=False)
with gr.Column(scale=3):
gr.Markdown("## Data Settings")
image_id = gr.Slider(
minimum=1,
maximum=4,
step=1,
label="Choose an image, ID is between 1 and 4",
value=1,
)
# Placeholder for slice slider, will update dynamically
slice_idx = gr.Slider(
minimum=0,
maximum=8,
step=1,
label="SAX slice to visualize",
value=0,
)
def get_num_slices(image_id):
sax_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_sax.nii.gz")
return sax_image.GetSize()[2]
def update_slice_slider(image_id):
num_slices = get_num_slices(image_id)
return gr.update(maximum=num_slices - 1, value=0, visible=True)
def fn(image_id, slice_idx):
lax_2c_image = load_nifti_from_github(
f"ukb/{image_id}/{image_id}_lax_2c.nii.gz"
)
lax_3c_image = load_nifti_from_github(
f"ukb/{image_id}/{image_id}_lax_3c.nii.gz"
)
lax_4c_image = load_nifti_from_github(
f"ukb/{image_id}/{image_id}_lax_4c.nii.gz"
)
sax_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_sax.nii.gz")
fig = plot_cmr_views(
lax_2c_image,
lax_3c_image,
lax_4c_image,
sax_image,
t_to_show=4,
depth_to_show=slice_idx,
)
fig.update_layout(height=600)
return fig
# When image changes, update the slice slider and plot
gr.on(
fn=lambda image_id: [update_slice_slider(image_id), fn(image_id, 0)],
inputs=[image_id],
outputs=[slice_idx, cmr_plot],
)
# When slice changes, update the plot
slice_idx.change(
fn=fn,
inputs=[image_id, slice_idx],
outputs=[cmr_plot],
)
return cmr_interface
@spaces.GPU
def mae_inference(
batch: dict[str, torch.Tensor],
transform: Compose,
model: CineMA,
mask_ratio: float,
) -> tuple[dict[str, np.ndarray], dict[str, np.ndarray], dict[str, np.ndarray]]:
model.to(device)
sax_slices = batch["sax"].shape[-1]
batch = transform(batch)
batch = {k: v[None, ...].to(device=device, dtype=dtype) for k, v in batch.items()}
with (
torch.no_grad(),
torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
):
_, pred_dict, enc_mask_dict, _ = model(batch, enc_mask_ratio=mask_ratio)
grid_size_dict = {
k: v.patch_embed.grid_size for k, v in model.enc_down_dict.items()
}
reconstructed_dict, masks_dict = reconstruct_images(
batch,
pred_dict,
enc_mask_dict,
model.dec_patch_size_dict,
grid_size_dict,
sax_slices,
)
batch = {
k: v.detach().to(torch.float32).cpu().numpy()[0, 0]
for k, v in batch.items()
}
batch["sax"] = batch["sax"][..., :sax_slices]
return batch, reconstructed_dict, masks_dict
def mae(image_id, mask_ratio, progress=gr.Progress()):
t = 4 # which time frame to use
progress(0, desc="Downloading model...")
model = CineMA.from_pretrained()
model.eval()
progress(0, desc="Downloading data...")
lax_2c_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_lax_2c.nii.gz")
lax_3c_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_lax_3c.nii.gz")
lax_4c_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_lax_4c.nii.gz")
sax_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_sax.nii.gz")
transform = Compose(
[
ScaleIntensityd(keys=("sax", "lax_2c", "lax_3c", "lax_4c")),
SpatialPadd(keys="sax", spatial_size=(192, 192, 16), method="end"),
SpatialPadd(
keys=("lax_2c", "lax_3c", "lax_4c"),
spatial_size=(256, 256),
method="end",
),
]
)
lax_2c_image_np = np.transpose(sitk.GetArrayFromImage(lax_2c_image))
lax_3c_image_np = np.transpose(sitk.GetArrayFromImage(lax_3c_image))
lax_4c_image_np = np.transpose(sitk.GetArrayFromImage(lax_4c_image))
sax_image_np = np.transpose(sitk.GetArrayFromImage(sax_image))
image_dict = {
"sax": sax_image_np[None, ..., t],
"lax_2c": lax_2c_image_np[None, ..., 0, t],
"lax_3c": lax_3c_image_np[None, ..., 0, t],
"lax_4c": lax_4c_image_np[None, ..., 0, t],
}
batch = {k: torch.from_numpy(v) for k, v in image_dict.items()}
progress(0.5, desc="Running inference...")
batch, reconstructed_dict, masks_dict = mae_inference(
batch, transform, model, mask_ratio
)
progress(1, desc="Plotting results...")
fig = plot_mae_reconstruction(
batch,
reconstructed_dict,
masks_dict,
)
return fig
def mae_tab():
with gr.Blocks() as mae_interface:
gr.Markdown(
"""
This page illustrates the masking and reconstruction process of the masked autoencoder. The model was trained with mask ratio 0.75 over 74,000 studies.
"""
)
with gr.Row():
with gr.Column(scale=5):
gr.Markdown("## Reconstruction")
plot = gr.Plot(show_label=False)
with gr.Column(scale=3):
gr.Markdown("## Data Settings")
image_id = gr.Slider(
minimum=1,
maximum=4,
step=1,
label="Choose an image, ID is between 1 and 4",
value=1,
)
mask_ratio = gr.Slider(
minimum=0.05,
maximum=1,
step=0.05,
label="Mask ratio",
value=0.75,
)
run_button = gr.Button("Run Masked Autoencoder", variant="primary")
run_button.click(
fn=mae,
inputs=[image_id, mask_ratio],
outputs=[plot],
)
return mae_interface
@spaces.GPU
def segmentation_sax_inference(
images: torch.Tensor,
view: str,
transform: Compose,
model: ConvUNetR,
progress=gr.Progress(),
) -> np.ndarray:
model.to(device)
n_slices, n_frames = images.shape[-2:]
labels_list = []
for t in tqdm(range(0, n_frames), total=n_frames):
progress((t + 1) / n_frames, desc=f"Processing frame {t + 1} / {n_frames}...")
batch = transform({view: torch.from_numpy(images[None, ..., t])})
batch = {
k: v[None, ...].to(device=device, dtype=torch.float32)
for k, v in batch.items()
}
with (
torch.no_grad(),
torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
):
logits = model(batch)[view]
labels_list.append(torch.argmax(logits, dim=1)[0, ..., :n_slices])
labels = torch.stack(labels_list, dim=-1).detach().to(torch.float32).cpu().numpy()
return labels
def segmentation_sax(trained_dataset, seed, image_id, t_step, progress=gr.Progress()):
# Fixed parameters
view = "sax"
split = "train" if image_id <= 100 else "test"
trained_dataset = {
"ACDC": "acdc",
"M&MS": "mnms",
"M&MS2": "mnms2",
}[str(trained_dataset)]
# Download and load model
progress(0, desc="Downloading model...")
image_path = hf_hub_download(
repo_id="mathpluscode/ACDC",
repo_type="dataset",
filename=f"{split}/patient{image_id:03d}/patient{image_id:03d}_sax_t.nii.gz",
cache_dir=cache_dir,
)
model = ConvUNetR.from_finetuned(
repo_id="mathpluscode/CineMA",
model_filename=f"finetuned/segmentation/{trained_dataset}_{view}/{trained_dataset}_{view}_{seed}.safetensors",
config_filename=f"finetuned/segmentation/{trained_dataset}_{view}/config.yaml",
cache_dir=cache_dir,
)
model.eval()
# Inference
progress(0, desc="Downloading data...")
transform = Compose(
[
ScaleIntensityd(keys=view),
SpatialPadd(keys=view, spatial_size=(192, 192, 16), method="end"),
]
)
images = np.transpose(sitk.GetArrayFromImage(sitk.ReadImage(image_path)))
images = images[..., ::t_step]
labels = segmentation_sax_inference(images, view, transform, model, progress)
progress(1, desc="Plotting results...")
fig1 = plot_segmentations_sax(images, labels, t_step)
fig2 = plot_volume_changes_sax(labels, t_step)
return fig1, fig2
def segmentation_sax_tab():
with gr.Blocks() as sax_interface:
gr.Markdown(
"""
This page demonstrates the segmentation of cardiac structures in the Short-Axis (SAX) view.
Please adjust the settings on the right panels and click the button to run the inference.
"""
)
with gr.Row():
with gr.Column(scale=4):
gr.Markdown("""
## Description
### Data
The available data is from ACDC. All images have been resampled to 1 mm Γ— 1 mm Γ— 10 mm and centre-cropped to 192 mm Γ— 192 mm for each SAX slice.
Image 101 - 150 are from the test set.
### Model
The available models are finetuned on different datasets ([ACDC](https://www.creatis.insa-lyon.fr/Challenge/acdc/), [M&Ms](https://www.ub.edu/mnms/), and [M&Ms2](https://www.ub.edu/mnms-2/)). For each dataset, there are 3 models finetuned on different seeds: 0, 1, 2.
### Visualization
The left figure shows the segmentation of ventricles and myocardium every n time steps across all SAX slices.
The right figure plots the ventricle and mycoardium volumes across all inference time frames.
""")
with gr.Column(scale=3):
gr.Markdown("## Data Settings")
image_id = gr.Slider(
minimum=101,
maximum=150,
step=1,
label="Choose an ACDC image, ID is between 101 and 150",
value=101,
)
t_step = gr.Slider(
minimum=1,
maximum=10,
step=1,
label="Choose the gap between time frames",
value=2,
)
with gr.Column(scale=3):
gr.Markdown("## Model Setting")
trained_dataset = gr.Dropdown(
choices=["ACDC", "M&MS", "M&MS2"],
label="Choose which dataset the segmentation model was finetuned on",
value="ACDC",
)
seed = gr.Slider(
minimum=0,
maximum=2,
step=1,
label="Choose which seed the finetuning used",
value=0,
)
run_button = gr.Button("Run SAX segmentation inference", variant="primary")
with gr.Row():
with gr.Column():
gr.Markdown("## Ventricle and Myocardium Segmentation")
segmentation_plot = gr.Plot(show_label=False)
with gr.Column():
gr.Markdown("## Ejection Fraction Prediction")
volume_plot = gr.Plot(show_label=False)
run_button.click(
fn=segmentation_sax,
inputs=[trained_dataset, seed, image_id, t_step],
outputs=[segmentation_plot, volume_plot],
)
return sax_interface
@spaces.GPU
def segmentation_lax_inference(
images: torch.Tensor,
view: str,
transform: Compose,
model: ConvUNetR,
progress=gr.Progress(),
) -> np.ndarray:
model.to(device)
n_frames = images.shape[-1]
labels_list = []
for t in tqdm(range(n_frames), total=n_frames):
progress((t + 1) / n_frames, desc=f"Processing frame {t + 1} / {n_frames}...")
batch = transform({view: torch.from_numpy(images[None, ..., 0, t])})
batch = {
k: v[None, ...].to(device=device, dtype=dtype) for k, v in batch.items()
}
with (
torch.no_grad(),
torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
):
logits = model(batch)[view] # (1, 4, x, y)
labels = (
torch.argmax(logits, dim=1)[0].detach().to(torch.float32).cpu().numpy()
) # (x, y)
# the model seems to hallucinate an additional right ventricle and myocardium sometimes
# find the connected component that is closest to left ventricle
labels = post_process_lax_segmentation(labels)
labels_list.append(labels)
labels = np.stack(labels_list, axis=-1) # (x, y, t)
return labels
def segmentation_lax(seed, image_id, progress=gr.Progress()):
# Fixed parameters
trained_dataset = "mnms2"
view = "lax_4c"
# Download and load model
progress(0, desc="Downloading model...")
model = ConvUNetR.from_finetuned(
repo_id="mathpluscode/CineMA",
model_filename=f"finetuned/segmentation/{trained_dataset}_{view}/{trained_dataset}_{view}_{seed}.safetensors",
config_filename=f"finetuned/segmentation/{trained_dataset}_{view}/config.yaml",
cache_dir=cache_dir,
)
model.eval()
# Inference
progress(0, desc="Downloading data...")
transform = ScaleIntensityd(keys=view)
images = np.transpose(
sitk.GetArrayFromImage(
load_nifti_from_github(f"ukb/{image_id}/{image_id}_{view}.nii.gz")
)
)
labels = segmentation_lax_inference(images, view, transform, model, progress)
progress(1, desc="Plotting results...")
fig1 = plot_segmentations_lax(images, labels)
fig2 = plot_volume_changes_lax(labels)
return fig1, fig2
def segmentation_lax_tab():
with gr.Blocks() as lax_interface:
gr.Markdown(
"""
This page demonstrates the segmentation of cardiac structures in the Long-Axis (LAX) view.
Please adjust the settings on the right panels and click the button to run the inference.
"""
)
with gr.Row():
with gr.Column(scale=4):
gr.Markdown("""
## Description
### Data
There are four example samples. All images have been resampled to 1 mm Γ— 1 mm and centre-cropped.
### Model
The available models are finetuned on [M&Ms2](https://www.ub.edu/mnms-2/). For each dataset, there are 3 models finetuned on different seeds: 0, 1, 2.
### Visualization
The left figure shows the segmentation of ventricles and myocardium across all time frames.
The right figure plots the ventricle and mycoardium volumes across all inference time frames.
""")
with gr.Column(scale=3):
gr.Markdown("## Data Settings")
image_id = gr.Slider(
minimum=1,
maximum=4,
step=1,
label="Choose an image, ID is between 1 and 4",
value=4,
)
with gr.Column(scale=3):
gr.Markdown("## Model Setting")
seed = gr.Slider(
minimum=0,
maximum=2,
step=1,
label="Choose which seed the finetuning used",
value=0,
)
run_button = gr.Button("Run LAX segmentation inference", variant="primary")
with gr.Row():
with gr.Column():
gr.Markdown("## Ventricle and Myocardium Segmentation")
segmentation_plot = gr.Plot(show_label=False)
with gr.Column():
gr.Markdown("## Ejection Fraction Prediction")
volume_plot = gr.Plot(show_label=False)
run_button.click(
fn=segmentation_lax,
inputs=[seed, image_id],
outputs=[segmentation_plot, volume_plot],
)
return lax_interface
with gr.Blocks(
theme=theme, title="CineMA: A Foundation Model for Cine Cardiac MRI"
) as demo:
gr.Markdown(
"""
# CineMA: A Foundation Model for Cine Cardiac MRI πŸŽ₯πŸ«€
This demo showcases the capabilities of CineMA in multiple tasks.
For more details, checkout our [GitHub](https://github.com/mathpluscode/CineMA).
"""
)
with gr.Tabs() as tabs:
with gr.TabItem("Cine CMR Views"):
cmr_tab()
with gr.TabItem("Masked Autoencoder"):
mae_tab()
with gr.TabItem("Segmentation in SAX View"):
segmentation_sax_tab()
with gr.TabItem("Segmentation in LAX View"):
segmentation_lax_tab()
demo.launch()