Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,166 Bytes
65411d8 ebd9a25 65411d8 ebd9a25 65411d8 ebd9a25 65411d8 ebd9a25 65411d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import numpy as np
import gradio as gr
from huggingface_hub import hf_hub_download
import SimpleITK as sitk # noqa: N813
import torch
from monai.transforms import Compose, ScaleIntensityd, SpatialPadd
from cinema import ConvUNetR
from pathlib import Path
from examples.inference.segmentation_sax import plot_segmentations, plot_volume_changes
import spaces
# cache directories
cache_dir = Path("/tmp/.cinema")
cache_dir.mkdir(parents=True, exist_ok=True)
@spaces.GPU
def inferece(
images: torch.Tensor,
view: str,
transform: Compose,
model: ConvUNetR,
progress=gr.Progress(),
) -> np.ndarray:
# set device and dtype
dtype, device = torch.float32, torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda")
if torch.cuda.is_bf16_supported():
dtype = torch.bfloat16
# inference
model.to(device)
n_slices, n_frames = images.shape[-2:]
labels_list = []
for t in range(0, n_frames):
progress((t + 1) / n_frames, desc=f"Processing frame {t + 1} / {n_frames}...")
batch = transform({view: torch.from_numpy(images[None, ..., t])})
batch = {
k: v[None, ...].to(device=device, dtype=torch.float32)
for k, v in batch.items()
}
with (
torch.no_grad(),
torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
):
logits = model(batch)[view]
labels_list.append(torch.argmax(logits, dim=1)[0, ..., :n_slices])
labels = torch.stack(labels_list, dim=-1).detach().cpu().numpy()
return labels
def run_inference(trained_dataset, seed, image_id, t_step, progress=gr.Progress()):
# Fixed parameters
view = "sax"
split = "train" if image_id <= 100 else "test"
trained_dataset = {
"ACDC": "acdc",
"M&MS": "mnms",
"M&MS2": "mnms2",
}[str(trained_dataset)]
# Download and load model
progress(0, desc="Downloading model and data...")
image_path = hf_hub_download(
repo_id="mathpluscode/ACDC",
repo_type="dataset",
filename=f"{split}/patient{image_id:03d}/patient{image_id:03d}_sax_t.nii.gz",
cache_dir=cache_dir,
)
model = ConvUNetR.from_finetuned(
repo_id="mathpluscode/CineMA",
model_filename=f"finetuned/segmentation/{trained_dataset}_{view}/{trained_dataset}_{view}_{seed}.safetensors",
config_filename=f"finetuned/segmentation/{trained_dataset}_{view}/config.yaml",
cache_dir=cache_dir,
)
# Load and process data
transform = Compose(
[
ScaleIntensityd(keys=view),
SpatialPadd(keys=view, spatial_size=(192, 192, 16), method="end"),
]
)
images = np.transpose(sitk.GetArrayFromImage(sitk.ReadImage(image_path)))
images = images[..., ::t_step]
labels = inferece(images, view, transform, model, progress)
progress(1, desc="Plotting results...")
fig1 = plot_segmentations(images, labels, t_step)
fig2 = plot_volume_changes(labels, t_step)
return fig1, fig2
# Create the Gradio interface
theme = gr.themes.Ocean(
primary_hue="red",
secondary_hue="purple",
)
with gr.Blocks(
theme=theme, title="CineMA: A Foundation Model for Cine Cardiac MRI"
) as demo:
gr.Markdown(
"""
# CineMA: A Foundation Model for Cine Cardiac MRI π₯π«
Below is an example of ejection fraction prediction inference. For more examples, checkout our [GitHub](https://github.com/mathpluscode/CineMA).
"""
)
with gr.Row():
with gr.Column(scale=0.4):
gr.Markdown("## Description")
gr.Markdown("""
Please adjust the settings on the right panels and click the button to run the inference.
### Data
The available data is from ACDC. All images have been resampled to 1 mm Γ 1 mm Γ 10 mm and centre-cropped to 192 mm Γ 192 mm for each SAX slice.
Image 1 - 100 are from the training set, and image 101 - 150 are from the test set.
### Model
The available models are finetuned on different datasets ([ACDC](https://www.creatis.insa-lyon.fr/Challenge/acdc/), [M&Ms](https://www.ub.edu/mnms/), and [M&Ms2](https://www.ub.edu/mnms-2/)). For each dataset, there are 3 models finetuned on different seeds: 0, 1, 2. The default model is the one finetuned on ACDC dataset with seed 0.
### Visualization
The left panel shows the segmentation of ventricles and myocardium every n time steps across all SAX slices.
The right panel plots the ventricle and mycoardium volumes across all inference time frames.
""")
with gr.Column(scale=0.3):
gr.Markdown("## Data Settings")
image_id = gr.Slider(
minimum=1,
maximum=150,
step=1,
label="Choose an ACDC image, ID is between 1 and 150",
value=150,
)
t_step = gr.Slider(
minimum=1,
maximum=10,
step=1,
label="Choose the gap between time frames",
value=2,
)
with gr.Column(scale=0.3):
gr.Markdown("## Model Setting")
trained_dataset = gr.Dropdown(
choices=["ACDC", "M&MS", "M&MS2"],
label="Choose which dataset the segmentation model was finetuned on",
value="ACDC",
)
seed = gr.Slider(
minimum=0,
maximum=2,
step=1,
label="Choose which seed the finetuning used",
value=0,
)
run_button = gr.Button("Run segmentation inference", variant="primary")
with gr.Row():
segmentation_plot = gr.Plot(label="Ventricle and Myocardium Segmentation")
volume_plot = gr.Plot(label="Ejection Fraction Prediction")
run_button.click(
fn=run_inference,
inputs=[trained_dataset, seed, image_id, t_step],
outputs=[segmentation_plot, volume_plot],
)
demo.launch()
|