Spaces:
Runtime error
Runtime error
from dotenv import find_dotenv, load_dotenv | |
from transformers import pipeline | |
import streamlit as st | |
import os | |
# load env variables from .env file | |
load_dotenv(find_dotenv()) | |
# img to text | |
def img_to_text(url): | |
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") | |
text = image_to_text(url)[0]["generated_text"] | |
return text | |
# llm | |
def generate_story(text): | |
generator = pipeline("text-generation", model="distilgpt2") | |
result = generator(text, max_length=20, num_return_sequences=1) | |
return result[0]['generated_text'] | |
# | |
# text-to-speech | |
def text_to_speech(text): | |
import requests | |
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits" | |
headers = {"Authorization": f"Bearer {os.environ.get('HUGGINGFACE_API_TOKEN')}"} | |
payload = { | |
"inputs": text | |
} | |
response = requests.post(API_URL, headers=headers, json=payload) | |
response.raise_for_status() | |
with open('audio.flac', 'wb') as file: | |
file.write(response.content) | |
def main(): | |
st.set_page_config(page_title="img to audio story") | |
st.header("turn image to audio story") | |
uploaded_file = st.file_uploader("Choose an image ... ", type="jpg") | |
if uploaded_file is not None: | |
print(uploaded_file) | |
bytes_data = uploaded_file.getvalue() | |
with open(uploaded_file.name, "wb") as file: | |
file.write(bytes_data) | |
st.image(uploaded_file, caption="Uploaded image", use_column_width=True) | |
text = img_to_text(uploaded_file.name) | |
story = generate_story(text) | |
text_to_speech(story) | |
with st.expander("text"): | |
st.write(text) | |
with st.expander("story"): | |
st.write(story) | |
st.audio("audio.flac") | |
main() | |