Spaces:
Sleeping
Sleeping
import gc | |
import os | |
import re | |
import hashlib | |
import queue | |
import threading | |
import json | |
import shlex | |
import sys | |
import subprocess | |
import librosa | |
import numpy as np | |
import soundfile as sf | |
import torch | |
from tqdm import tqdm | |
import random | |
import spaces | |
import onnxruntime as ort | |
import warnings | |
import spaces | |
import gradio as gr | |
import logging | |
import time | |
import traceback | |
import numpy as np | |
from pathlib import Path | |
from huggingface_hub import hf_hub_download | |
from typing import Dict, Tuple | |
MODEL_ID = "masszhou/mdxnet" | |
MODELS_PATH = { | |
"bgm": Path(hf_hub_download(repo_id=MODEL_ID, filename="UVR-MDX-NET-Inst_HQ_3.onnx")), | |
"basic_vocal": Path(hf_hub_download(repo_id=MODEL_ID, filename="UVR-MDX-NET-Voc_FT.onnx")), | |
"main_vocal": Path(hf_hub_download(repo_id=MODEL_ID, filename="UVR_MDXNET_KARA_2.onnx")) | |
} | |
STEM_NAMING = { | |
"Vocals": "Instrumental", | |
"Other": "Instruments", | |
"Instrumental": "Vocals", | |
"Drums": "Drumless", | |
"Bass": "Bassless", | |
} | |
def convert_to_stereo_and_wav(audio_path: Path) -> Path: | |
# loading takes time since resampling at 44100 Hz | |
wave, sr = librosa.load(str(audio_path), mono=False, sr=44100) | |
# check if mono | |
if type(wave[0]) != np.ndarray or audio_path.suffix != ".wav": # noqa | |
stereo_path = audio_path.with_name(audio_path.stem + "_stereo.wav") | |
command = shlex.split( | |
f'ffmpeg -y -loglevel error -i "{str(audio_path)}" -ac 2 -f wav "{str(stereo_path)}"' | |
) | |
sub_params = { | |
"stdout": subprocess.PIPE, | |
"stderr": subprocess.PIPE, | |
"creationflags": subprocess.CREATE_NO_WINDOW | |
if sys.platform == "win32" | |
else 0, | |
} | |
process_wav = subprocess.Popen(command, **sub_params) | |
output, errors = process_wav.communicate() | |
if process_wav.returncode != 0 or not stereo_path.exists(): | |
raise Exception("Error processing audio to stereo wav") | |
return stereo_path | |
else: | |
return Path(audio_path) | |
class MDXModel: | |
def __init__(self, | |
device: torch.device, | |
dim_f: int, | |
dim_t: int, | |
n_fft: int, | |
hop: int = 1024, | |
stem_name: str = "Vocals", | |
compensation: float = 1.000,): | |
self.dim_f = dim_f # frequency bins | |
self.dim_t = dim_t | |
self.dim_c = 4 | |
self.n_fft = n_fft | |
self.hop = hop | |
self.stem_name = stem_name | |
self.compensation = compensation | |
self.n_bins = self.n_fft // 2 + 1 | |
self.chunk_size = hop * (self.dim_t - 1) | |
self.window = torch.hann_window( | |
window_length=self.n_fft, periodic=True | |
).to(device) | |
out_c = self.dim_c | |
self.freq_pad = torch.zeros( | |
[1, out_c, self.n_bins - self.dim_f, self.dim_t] | |
).to(device) | |
def stft(self, x): | |
""" | |
computes the Fourier transform of short overlapping windows of the input | |
""" | |
x = x.reshape([-1, self.chunk_size]) | |
x = torch.stft( | |
x, | |
n_fft=self.n_fft, | |
hop_length=self.hop, | |
window=self.window, | |
center=True, | |
return_complex=True, | |
) | |
x = torch.view_as_real(x) | |
x = x.permute([0, 3, 1, 2]) | |
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape( | |
[-1, 4, self.n_bins, self.dim_t] | |
) | |
return x[:, :, : self.dim_f] | |
def istft(self, x, freq_pad=None): | |
""" | |
computes the inverse Fourier transform of short overlapping windows of the input | |
""" | |
freq_pad = ( | |
self.freq_pad.repeat([x.shape[0], 1, 1, 1]) | |
if freq_pad is None | |
else freq_pad | |
) | |
x = torch.cat([x, freq_pad], -2) | |
# c = 4*2 if self.target_name=='*' else 2 | |
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape( | |
[-1, 2, self.n_bins, self.dim_t] | |
) | |
x = x.permute([0, 2, 3, 1]) | |
x = x.contiguous() | |
x = torch.view_as_complex(x) | |
x = torch.istft( | |
x, | |
n_fft=self.n_fft, | |
hop_length=self.hop, | |
window=self.window, | |
center=True, | |
) | |
return x.reshape([-1, 2, self.chunk_size]) | |
class MDX: | |
DEFAULT_SR = 44100 # unit: Hz | |
# Unit: seconds | |
DEFAULT_CHUNK_SIZE = 0 * DEFAULT_SR | |
DEFAULT_MARGIN_SIZE = 1 * DEFAULT_SR | |
def __init__(self, model_path: Path, params: MDXModel, processor: int = 0): | |
# Set the device and the provider (CPU or CUDA) | |
self.device = ( | |
torch.device(f"cuda:{processor}") | |
if processor >= 0 | |
else torch.device("cpu") | |
) | |
self.provider = ( | |
["CUDAExecutionProvider"] | |
if processor >= 0 | |
else ["CPUExecutionProvider"] | |
) | |
self.model = params | |
# Load the ONNX model using ONNX Runtime | |
self.ort = ort.InferenceSession(model_path, providers=self.provider) | |
# Preload the model for faster performance | |
self.ort.run( | |
None, | |
{"input": torch.rand(1, 4, params.dim_f, params.dim_t).numpy()}, | |
) | |
self.process = lambda spec: self.ort.run( | |
None, {"input": spec.cpu().numpy()} | |
)[0] | |
self.prog = None | |
def get_hash(model_path: Path) -> str: | |
try: | |
with open(model_path, "rb") as f: | |
f.seek(-10000 * 1024, 2) | |
model_hash = hashlib.md5(f.read()).hexdigest() | |
except: # noqa | |
model_hash = hashlib.md5(open(model_path, "rb").read()).hexdigest() | |
return model_hash | |
def segment(wave: np.array, | |
combine: bool = True, | |
chunk_size: int = DEFAULT_CHUNK_SIZE, | |
margin_size: int = DEFAULT_MARGIN_SIZE, | |
) -> np.array: | |
""" | |
Segment or join segmented wave array | |
Args: | |
wave: (np.array) Wave array to be segmented or joined | |
combine: (bool) If True, combines segmented wave array. | |
If False, segments wave array. | |
chunk_size: (int) Size of each segment (in samples) | |
margin_size: (int) Size of margin between segments (in samples) | |
Returns: | |
numpy array: Segmented or joined wave array | |
""" | |
if combine: | |
# Initializing as None instead of [] for later numpy array concatenation | |
processed_wave = None | |
for segment_count, segment in enumerate(wave): | |
start = 0 if segment_count == 0 else margin_size | |
end = None if segment_count == len(wave) - 1 else -margin_size | |
if margin_size == 0: | |
end = None | |
if processed_wave is None: # Create array for first segment | |
processed_wave = segment[:, start:end] | |
else: # Concatenate to existing array for subsequent segments | |
processed_wave = np.concatenate( | |
(processed_wave, segment[:, start:end]), axis=-1 | |
) | |
else: | |
processed_wave = [] | |
sample_count = wave.shape[-1] | |
if chunk_size <= 0 or chunk_size > sample_count: | |
chunk_size = sample_count | |
if margin_size > chunk_size: | |
margin_size = chunk_size | |
for segment_count, skip in enumerate( | |
range(0, sample_count, chunk_size) | |
): | |
margin = 0 if segment_count == 0 else margin_size | |
end = min(skip + chunk_size + margin_size, sample_count) | |
start = skip - margin | |
cut = wave[:, start:end].copy() | |
processed_wave.append(cut) | |
if end == sample_count: | |
break | |
return processed_wave | |
def pad_wave(self, wave: np.array) -> Tuple[np.array, int, int]: | |
""" | |
Pad the wave array to match the required chunk size | |
Args: | |
wave: (np.array) Wave array to be padded | |
Returns: | |
tuple: (padded_wave, pad, trim) | |
- padded_wave: Padded wave array | |
- pad: Number of samples that were padded | |
- trim: Number of samples that were trimmed | |
""" | |
n_sample = wave.shape[1] | |
trim = self.model.n_fft // 2 | |
gen_size = self.model.chunk_size - 2 * trim | |
pad = gen_size - n_sample % gen_size | |
# Padded wave | |
wave_p = np.concatenate( | |
( | |
np.zeros((2, trim)), | |
wave, | |
np.zeros((2, pad)), | |
np.zeros((2, trim)), | |
), | |
1, | |
) | |
mix_waves = [] | |
for i in range(0, n_sample + pad, gen_size): | |
waves = np.array(wave_p[:, i:i + self.model.chunk_size]) | |
mix_waves.append(waves) | |
mix_waves = torch.tensor(np.array(mix_waves), dtype=torch.float32).to(self.device) | |
return mix_waves, pad, trim | |
def _process_wave(self, mix_waves, trim, pad, q: queue.Queue, _id: int) -> np.array: | |
""" | |
Process each wave segment in a multi-threaded environment | |
Args: | |
mix_waves: (torch.Tensor) Wave segments to be processed | |
trim: (int) Number of samples trimmed during padding | |
pad: (int) Number of samples padded during padding | |
q: (queue.Queue) Queue to hold the processed wave segments | |
_id: (int) Identifier of the processed wave segment | |
Returns: | |
numpy array: Processed wave segment | |
""" | |
mix_waves = mix_waves.split(1) | |
with torch.no_grad(): | |
pw = [] | |
for mix_wave in mix_waves: | |
self.prog.update() | |
spec = self.model.stft(mix_wave) | |
processed_spec = torch.tensor(self.process(spec)) | |
processed_wav = self.model.istft( | |
processed_spec.to(self.device) | |
) | |
processed_wav = ( | |
processed_wav[:, :, trim:-trim] | |
.transpose(0, 1) | |
.reshape(2, -1) | |
.cpu() | |
.numpy() | |
) | |
pw.append(processed_wav) | |
processed_signal = np.concatenate(pw, axis=-1)[:, :-pad] | |
q.put({_id: processed_signal}) | |
return processed_signal | |
def process_wave(self, wave: np.array, mt_threads=1) -> np.array: | |
""" | |
Process the wave array in a multi-threaded environment | |
Args: | |
wave: (np.array) Wave array to be processed | |
mt_threads: (int) Number of threads to be used for processing | |
Returns: | |
numpy array: Processed wave array | |
""" | |
self.prog = tqdm(total=0) | |
chunk = wave.shape[-1] // mt_threads | |
waves = self.segment(wave, False, chunk) | |
# Create a queue to hold the processed wave segments | |
q = queue.Queue() | |
threads = [] | |
for c, batch in enumerate(waves): | |
mix_waves, pad, trim = self.pad_wave(batch) | |
self.prog.total = len(mix_waves) * mt_threads | |
thread = threading.Thread( | |
target=self._process_wave, args=(mix_waves, trim, pad, q, c) | |
) | |
thread.start() | |
threads.append(thread) | |
for thread in threads: | |
thread.join() | |
self.prog.close() | |
processed_batches = [] | |
while not q.empty(): | |
processed_batches.append(q.get()) | |
processed_batches = [ | |
list(wave.values())[0] | |
for wave in sorted( | |
processed_batches, key=lambda d: list(d.keys())[0] | |
) | |
] | |
assert len(processed_batches) == len( | |
waves | |
), "Incomplete processed batches, please reduce batch size!" | |
return self.segment(processed_batches, True, chunk) | |
def run_mdx(model_params: Dict, | |
input_filename: Path, | |
output_dir: Path, | |
model_path: Path, | |
denoise: bool = False, | |
m_threads: int = 2, | |
device_base: str = "cuda", | |
) -> Tuple[str, str]: | |
""" | |
Separate vocals using MDX model | |
""" | |
if device_base == "cuda": | |
device = torch.device("cuda:0") | |
processor_num = 0 | |
device_properties = torch.cuda.get_device_properties(device) | |
vram_gb = device_properties.total_memory / 1024**3 | |
m_threads = 1 if vram_gb < 8 else (8 if vram_gb > 32 else 2) | |
else: | |
device = torch.device("cpu") | |
processor_num = -1 | |
m_threads = 1 | |
print(f"device: {device}") | |
model_hash = MDX.get_hash(model_path) # type: str | |
mp = model_params.get(model_hash) | |
model = MDXModel( | |
device, | |
dim_f=mp["mdx_dim_f_set"], | |
dim_t=2 ** mp["mdx_dim_t_set"], | |
n_fft=mp["mdx_n_fft_scale_set"], | |
stem_name=mp["primary_stem"], | |
compensation=mp["compensate"], | |
) | |
mdx_sess = MDX(model_path, model, processor=processor_num) | |
wave, sr = librosa.load(input_filename, mono=False, sr=44100) | |
# normalizing input wave gives better output | |
peak = max(np.max(wave), abs(np.min(wave))) | |
wave /= peak | |
if denoise: | |
wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (mdx_sess.process_wave(wave, m_threads)) # type: np.array | |
wave_processed *= 0.5 | |
else: | |
wave_processed = mdx_sess.process_wave(wave, m_threads) | |
# return to previous peak | |
wave_processed *= peak | |
stem_name = model.stem_name | |
# output main track | |
main_filepath = output_dir / input_filename.with_name(f"{input_filename.stem}_{stem_name}.wav") | |
sf.write(main_filepath, wave_processed.T, sr) | |
# output reverse track | |
invert_filepath = output_dir / input_filename.with_name(f"{input_filename.stem}_{stem_name}_reverse.wav") | |
sf.write(invert_filepath, (-wave_processed.T * model.compensation) + wave.T, sr) | |
del mdx_sess, wave_processed, wave | |
gc.collect() | |
torch.cuda.empty_cache() | |
return main_filepath, invert_filepath | |
def run_mdx_return_np(model_params: Dict, | |
input_filename: Path, | |
model_path: Path, | |
denoise: bool = False, | |
m_threads: int = 2, | |
device_base: str = "cuda", | |
) -> Tuple[np.ndarray, np.ndarray]: | |
""" | |
Separate vocals using MDX model | |
""" | |
if device_base == "cuda": | |
device = torch.device("cuda:0") | |
processor_num = 0 | |
device_properties = torch.cuda.get_device_properties(device) | |
vram_gb = device_properties.total_memory / 1024**3 | |
m_threads = 1 if vram_gb < 8 else (8 if vram_gb > 32 else 2) | |
else: | |
device = torch.device("cpu") | |
processor_num = -1 | |
m_threads = 1 | |
print(f"device: {device}") | |
model_hash = MDX.get_hash(model_path) # type: str | |
mp = model_params.get(model_hash) | |
model = MDXModel( | |
device, | |
dim_f=mp["mdx_dim_f_set"], | |
dim_t=2 ** mp["mdx_dim_t_set"], | |
n_fft=mp["mdx_n_fft_scale_set"], | |
stem_name=mp["primary_stem"], | |
compensation=mp["compensate"], | |
) | |
mdx_sess = MDX(model_path, model, processor=processor_num) | |
wave, sr = librosa.load(input_filename, mono=False, sr=44100) | |
# normalizing input wave gives better output | |
peak = max(np.max(wave), abs(np.min(wave))) | |
wave /= peak | |
if denoise: | |
wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (mdx_sess.process_wave(wave, m_threads)) # type: np.array | |
wave_processed *= 0.5 | |
else: | |
wave_processed = mdx_sess.process_wave(wave, m_threads) | |
# return to previous peak | |
wave_processed *= peak | |
stem_name = model.stem_name | |
# output main track | |
main_track = wave_processed.T | |
# output reverse track | |
invert_track = (-wave_processed.T * model.compensation) + wave.T | |
return main_track, invert_track | |
def extract_bgm(mdx_model_params: Dict, | |
input_filename: Path, | |
model_bgm_path: Path, | |
output_dir: Path, | |
device_base: str = "cuda") -> Path: | |
""" | |
Extract pure background music, remove vocals | |
""" | |
background_path, _ = run_mdx(model_params=mdx_model_params, | |
input_filename=input_filename, | |
output_dir=output_dir, | |
model_path=model_bgm_path, | |
denoise=False, | |
device_base=device_base, | |
) | |
return background_path | |
def extract_vocal(mdx_model_params: Dict, | |
input_filename: Path, | |
model_basic_vocal_path: Path, | |
model_main_vocal_path: Path, | |
output_dir: Path, | |
main_vocals_flag: bool = False, | |
device_base: str = "cuda") -> Path: | |
""" | |
Extract vocals | |
""" | |
# First use UVR-MDX-NET-Voc_FT.onnx basic vocal separation model | |
vocals_path, _ = run_mdx(mdx_model_params, | |
input_filename, | |
output_dir, | |
model_basic_vocal_path, | |
denoise=True, | |
device_base=device_base, | |
) | |
# If "main_vocals_flag" is enabled, use UVR_MDXNET_KARA_2.onnx to further separate main vocals (Main) from backup vocals/background vocals (Backup) | |
if main_vocals_flag: | |
time.sleep(2) | |
backup_vocals_path, main_vocals_path = run_mdx(mdx_model_params, | |
output_dir, | |
model_main_vocal_path, | |
vocals_path, | |
denoise=True, | |
device_base=device_base, | |
) | |
vocals_path = main_vocals_path | |
# If "dereverb_flag" is enabled, use Reverb_HQ_By_FoxJoy.onnx for dereverberation | |
# deactived since Model license unknown | |
# if dereverb_flag: | |
# time.sleep(2) | |
# _, vocals_dereverb_path = run_mdx(mdx_model_params, | |
# output_dir, | |
# mdxnet_models_dir/"Reverb_HQ_By_FoxJoy.onnx", | |
# vocals_path, | |
# denoise=True, | |
# device_base=device_base, | |
# ) | |
# vocals_path = vocals_dereverb_path | |
return vocals_path | |
def process_uvr_task(input_file_path: Path, | |
output_dir: Path, | |
models_path: Dict[str, Path], | |
main_vocals_flag: bool = False, # If "Main" is enabled, use UVR_MDXNET_KARA_2.onnx to further separate main and backup vocals | |
) -> Tuple[Path, Path]: | |
device_base = "cuda" if torch.cuda.is_available() else "cpu" | |
# load mdx model definition | |
with open("./mdx_models/model_data.json") as infile: | |
mdx_model_params = json.load(infile) # type: Dict | |
output_dir.mkdir(parents=True, exist_ok=True) | |
input_file_path = convert_to_stereo_and_wav(input_file_path) # type: Path | |
# 1. Extract pure background music, remove vocals | |
background_path = extract_bgm(mdx_model_params, | |
input_file_path, | |
models_path["bgm"], | |
output_dir, | |
device_base=device_base) | |
# 2. Separate vocals | |
# First use UVR-MDX-NET-Voc_FT.onnx basic vocal separation model | |
vocals_path = extract_vocal(mdx_model_params, | |
input_file_path, | |
models_path["basic_vocal"], | |
models_path["main_vocal"], | |
output_dir, | |
main_vocals_flag=main_vocals_flag, | |
device_base=device_base) | |
return background_path, vocals_path | |
def get_model_params(model_path: Path) -> Dict: | |
""" | |
Get model parameters from model path | |
""" | |
with open(model_path / "model_data.json") as infile: | |
return json.load(infile) # type: Dict | |
def inference_mdx(audio_file: str) -> list[str]: | |
mdx_model_params = get_model_params(Path("./mdx_models")) | |
audio_file = convert_to_stereo_and_wav(Path(audio_file)) # resampling at 44100 Hz | |
device_base = "cuda" if torch.cuda.is_available() else "cpu" | |
output_dir = Path("./out/mdx") | |
os.makedirs(output_dir, exist_ok=True) | |
model_bgm_path = MODELS_PATH["bgm"] | |
background_path, vocal_path = run_mdx( | |
model_params=mdx_model_params, | |
input_filename=audio_file, | |
output_dir=output_dir, | |
model_path=model_bgm_path, | |
denoise=False, | |
device_base=device_base, | |
) | |
return str(vocal_path), str(background_path) | |
if __name__ == "__main__": | |
# zero = torch.Tensor([0]).cuda() | |
# print(f"zero.device: {zero.device}") | |
app = gr.Interface( | |
fn = inference_mdx, | |
inputs = gr.Audio(type="filepath", label="Input"), | |
outputs = [gr.Audio(type="filepath", label="Vocals"),gr.Audio(type="filepath", label="BGM")], | |
title="MDXNET Music Source Separation", | |
article="<p style='text-align: center'><a href='https://arxiv.org/abs/2111.12203' target='_blank'>KUIELab-MDX-Net: A Two-Stream Neural Network for Music Demixing</a> | <a href='https://github.com/kuielab/mdx-net' target='_blank'>Github Repo</a> | <a href='https://github.com/kuielab/mdx-net/blob/main/LICENSE' target='_blank'>MIT License</a></p>", | |
api_name="mdxnet_separation", | |
) | |
app.launch() | |