Spaces:
Running
Running
fixed client
Browse files- app.py +42 -14
- requirements.txt +4 -0
- utils.py +151 -0
app.py
CHANGED
@@ -2,6 +2,18 @@ import gradio as gr
|
|
2 |
import shutil
|
3 |
import numpy as np
|
4 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
def inference(audio_file):
|
@@ -10,6 +22,13 @@ def inference(audio_file):
|
|
10 |
output_path1 = "downloaded_audio_1.wav"
|
11 |
output_path2 = "downloaded_audio_2.wav"
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
shutil.copy(audio_file, output_path1)
|
14 |
shutil.copy(audio_file, output_path2)
|
15 |
|
@@ -21,6 +40,7 @@ def get_gui(theme, title, description):
|
|
21 |
# Add title and description
|
22 |
gr.Markdown(title)
|
23 |
gr.Markdown(description)
|
|
|
24 |
|
25 |
audio_input = gr.Audio(label="Audio file", type="filepath") # type: str | Path | bytes | tuple[int, np.ndarray] | None
|
26 |
download_button = gr.Button("Inference")
|
@@ -39,24 +59,32 @@ if __name__ == "__main__":
|
|
39 |
title = "<center><strong><font size='7'>Vocal BGM Separator</font></strong></center>"
|
40 |
description = "This demo uses the MDX-Net models to perform Ultimate Vocal Remover (uvr) task for vocal and background sound separation."
|
41 |
theme = "NoCrypt/miku"
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
app_api = gr.Interface(
|
44 |
fn=inference,
|
45 |
inputs=gr.Audio(type="filepath"), # 接收文件路径(也可以换成 type="file")
|
46 |
outputs=gr.File(file_count="multiple"), # 返回多个文件
|
47 |
)
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
app_api.queue(default_concurrency_limit=40)
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
share=False,
|
59 |
-
show_error=True,
|
60 |
-
quiet=False,
|
61 |
-
debug=False,
|
62 |
-
)
|
|
|
2 |
import shutil
|
3 |
import numpy as np
|
4 |
from pathlib import Path
|
5 |
+
import os
|
6 |
+
from utils import get_hash
|
7 |
+
import time
|
8 |
+
import torch
|
9 |
+
|
10 |
+
|
11 |
+
def get_device_info():
|
12 |
+
if torch.cuda.is_available():
|
13 |
+
device = f"GPU ({torch.cuda.get_device_name(0)})"
|
14 |
+
else:
|
15 |
+
device = "CPU"
|
16 |
+
return f"当前运行环境: {device}"
|
17 |
|
18 |
|
19 |
def inference(audio_file):
|
|
|
22 |
output_path1 = "downloaded_audio_1.wav"
|
23 |
output_path2 = "downloaded_audio_2.wav"
|
24 |
|
25 |
+
hash_audio = str(get_hash(audio_file))
|
26 |
+
media_dir = os.path.dirname(audio_file)
|
27 |
+
|
28 |
+
outputs = []
|
29 |
+
|
30 |
+
start_time = time.time()
|
31 |
+
|
32 |
shutil.copy(audio_file, output_path1)
|
33 |
shutil.copy(audio_file, output_path2)
|
34 |
|
|
|
40 |
# Add title and description
|
41 |
gr.Markdown(title)
|
42 |
gr.Markdown(description)
|
43 |
+
gr.Markdown(get_device_info())
|
44 |
|
45 |
audio_input = gr.Audio(label="Audio file", type="filepath") # type: str | Path | bytes | tuple[int, np.ndarray] | None
|
46 |
download_button = gr.Button("Inference")
|
|
|
59 |
title = "<center><strong><font size='7'>Vocal BGM Separator</font></strong></center>"
|
60 |
description = "This demo uses the MDX-Net models to perform Ultimate Vocal Remover (uvr) task for vocal and background sound separation."
|
61 |
theme = "NoCrypt/miku"
|
62 |
+
|
63 |
+
BASE_DIR = "." # os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
64 |
+
mdxnet_models_dir = os.path.join(BASE_DIR, "mdx_models")
|
65 |
+
output_dir = os.path.join(BASE_DIR, "output")
|
66 |
+
|
67 |
+
# confirm entry points from client
|
68 |
+
# client_local = Client("http://127.0.0.1:7860")
|
69 |
+
# client = Client(f"{HF_USERNAME}/{HF_SPACENAME}", hf_token=HF_TOKEN)
|
70 |
+
# client_local.view_api()
|
71 |
+
|
72 |
+
# entry point for GUI
|
73 |
+
# predict(audio_file, api_name="/inference") -> result
|
74 |
+
app_gui = get_gui(theme, title, description)
|
75 |
+
|
76 |
+
# entry point for API
|
77 |
+
# predict(audio_file, api_name="/predict") -> output
|
78 |
app_api = gr.Interface(
|
79 |
fn=inference,
|
80 |
inputs=gr.Audio(type="filepath"), # 接收文件路径(也可以换成 type="file")
|
81 |
outputs=gr.File(file_count="multiple"), # 返回多个文件
|
82 |
)
|
83 |
|
84 |
+
app = gr.TabbedInterface(
|
85 |
+
interface_list=[app_gui, app_api],
|
86 |
+
tab_names=["GUI", "API"]
|
87 |
+
)
|
|
|
|
|
88 |
|
89 |
+
app.queue(default_concurrency_limit=40)
|
90 |
+
app.launch()
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,3 +1,7 @@
|
|
1 |
gradio
|
2 |
torch
|
3 |
torchaudio
|
|
|
|
|
|
|
|
|
|
1 |
gradio
|
2 |
torch
|
3 |
torchaudio
|
4 |
+
librosa
|
5 |
+
onnxruntime
|
6 |
+
numpy
|
7 |
+
tqdm
|
utils.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, zipfile, shutil, subprocess, shlex, sys # noqa
|
2 |
+
from urllib.parse import urlparse
|
3 |
+
import re
|
4 |
+
import logging
|
5 |
+
import hashlib
|
6 |
+
|
7 |
+
|
8 |
+
def load_file_from_url(
|
9 |
+
url: str,
|
10 |
+
model_dir: str,
|
11 |
+
file_name: str | None = None,
|
12 |
+
overwrite: bool = False,
|
13 |
+
progress: bool = True,
|
14 |
+
) -> str:
|
15 |
+
"""Download a file from `url` into `model_dir`,
|
16 |
+
using the file present if possible.
|
17 |
+
|
18 |
+
Returns the path to the downloaded file.
|
19 |
+
"""
|
20 |
+
os.makedirs(model_dir, exist_ok=True)
|
21 |
+
if not file_name:
|
22 |
+
parts = urlparse(url)
|
23 |
+
file_name = os.path.basename(parts.path)
|
24 |
+
cached_file = os.path.abspath(os.path.join(model_dir, file_name))
|
25 |
+
|
26 |
+
# Overwrite
|
27 |
+
if os.path.exists(cached_file):
|
28 |
+
if overwrite or os.path.getsize(cached_file) == 0:
|
29 |
+
remove_files(cached_file)
|
30 |
+
|
31 |
+
# Download
|
32 |
+
if not os.path.exists(cached_file):
|
33 |
+
logger.info(f'Downloading: "{url}" to {cached_file}\n')
|
34 |
+
from torch.hub import download_url_to_file
|
35 |
+
|
36 |
+
download_url_to_file(url, cached_file, progress=progress)
|
37 |
+
else:
|
38 |
+
logger.debug(cached_file)
|
39 |
+
|
40 |
+
return cached_file
|
41 |
+
|
42 |
+
|
43 |
+
def friendly_name(file: str):
|
44 |
+
if file.startswith("http"):
|
45 |
+
file = urlparse(file).path
|
46 |
+
|
47 |
+
file = os.path.basename(file)
|
48 |
+
model_name, extension = os.path.splitext(file)
|
49 |
+
return model_name, extension
|
50 |
+
|
51 |
+
|
52 |
+
def download_manager(
|
53 |
+
url: str,
|
54 |
+
path: str,
|
55 |
+
extension: str = "",
|
56 |
+
overwrite: bool = False,
|
57 |
+
progress: bool = True,
|
58 |
+
):
|
59 |
+
url = url.strip()
|
60 |
+
|
61 |
+
name, ext = friendly_name(url)
|
62 |
+
name += ext if not extension else f".{extension}"
|
63 |
+
|
64 |
+
if url.startswith("http"):
|
65 |
+
filename = load_file_from_url(
|
66 |
+
url=url,
|
67 |
+
model_dir=path,
|
68 |
+
file_name=name,
|
69 |
+
overwrite=overwrite,
|
70 |
+
progress=progress,
|
71 |
+
)
|
72 |
+
else:
|
73 |
+
filename = path
|
74 |
+
|
75 |
+
return filename
|
76 |
+
|
77 |
+
|
78 |
+
def remove_files(file_list):
|
79 |
+
if isinstance(file_list, str):
|
80 |
+
file_list = [file_list]
|
81 |
+
|
82 |
+
for file in file_list:
|
83 |
+
if os.path.exists(file):
|
84 |
+
os.remove(file)
|
85 |
+
|
86 |
+
|
87 |
+
def remove_directory_contents(directory_path):
|
88 |
+
"""
|
89 |
+
Removes all files and subdirectories within a directory.
|
90 |
+
|
91 |
+
Parameters:
|
92 |
+
directory_path (str): Path to the directory whose
|
93 |
+
contents need to be removed.
|
94 |
+
"""
|
95 |
+
if os.path.exists(directory_path):
|
96 |
+
for filename in os.listdir(directory_path):
|
97 |
+
file_path = os.path.join(directory_path, filename)
|
98 |
+
try:
|
99 |
+
if os.path.isfile(file_path):
|
100 |
+
os.remove(file_path)
|
101 |
+
elif os.path.isdir(file_path):
|
102 |
+
shutil.rmtree(file_path)
|
103 |
+
except Exception as e:
|
104 |
+
logger.error(f"Failed to delete {file_path}. Reason: {e}")
|
105 |
+
logger.info(f"Content in '{directory_path}' removed.")
|
106 |
+
else:
|
107 |
+
logger.error(f"Directory '{directory_path}' does not exist.")
|
108 |
+
|
109 |
+
|
110 |
+
# Create directory if not exists
|
111 |
+
def create_directories(directory_path):
|
112 |
+
if isinstance(directory_path, str):
|
113 |
+
directory_path = [directory_path]
|
114 |
+
for one_dir_path in directory_path:
|
115 |
+
if not os.path.exists(one_dir_path):
|
116 |
+
os.makedirs(one_dir_path)
|
117 |
+
logger.debug(f"Directory '{one_dir_path}' created.")
|
118 |
+
|
119 |
+
|
120 |
+
def setup_logger(name_log):
|
121 |
+
logger = logging.getLogger(name_log)
|
122 |
+
logger.setLevel(logging.INFO)
|
123 |
+
|
124 |
+
_default_handler = logging.StreamHandler() # Set sys.stderr as stream.
|
125 |
+
_default_handler.flush = sys.stderr.flush
|
126 |
+
logger.addHandler(_default_handler)
|
127 |
+
|
128 |
+
logger.propagate = False
|
129 |
+
|
130 |
+
handlers = logger.handlers
|
131 |
+
|
132 |
+
for handler in handlers:
|
133 |
+
formatter = logging.Formatter("[%(levelname)s] >> %(message)s")
|
134 |
+
handler.setFormatter(formatter)
|
135 |
+
|
136 |
+
# logger.handlers
|
137 |
+
|
138 |
+
return logger
|
139 |
+
|
140 |
+
|
141 |
+
logger = setup_logger("ss")
|
142 |
+
logger.setLevel(logging.INFO)
|
143 |
+
|
144 |
+
|
145 |
+
def get_hash(filepath):
|
146 |
+
with open(filepath, 'rb') as f:
|
147 |
+
file_hash = hashlib.blake2b()
|
148 |
+
while chunk := f.read(8192):
|
149 |
+
file_hash.update(chunk)
|
150 |
+
|
151 |
+
return file_hash.hexdigest()[:18]
|