Spaces:
Running
Running
add mdxnet model
Browse files- mdxnet_model.py +313 -0
mdxnet_model.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# reference: https://huggingface.co/spaces/r3gm/Audio_separator
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import onnxruntime as ort
|
5 |
+
import hashlib
|
6 |
+
import queue
|
7 |
+
import threading
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
|
11 |
+
class MDXModel:
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
device,
|
15 |
+
dim_f,
|
16 |
+
dim_t,
|
17 |
+
n_fft,
|
18 |
+
hop=1024,
|
19 |
+
stem_name=None,
|
20 |
+
compensation=1.000,
|
21 |
+
):
|
22 |
+
self.dim_f = dim_f # frequency bins
|
23 |
+
self.dim_t = dim_t
|
24 |
+
self.dim_c = 4
|
25 |
+
self.n_fft = n_fft
|
26 |
+
self.hop = hop
|
27 |
+
self.stem_name = stem_name
|
28 |
+
self.compensation = compensation
|
29 |
+
|
30 |
+
self.n_bins = self.n_fft // 2 + 1
|
31 |
+
self.chunk_size = hop * (self.dim_t - 1)
|
32 |
+
self.window = torch.hann_window(
|
33 |
+
window_length=self.n_fft, periodic=True
|
34 |
+
).to(device)
|
35 |
+
|
36 |
+
out_c = self.dim_c
|
37 |
+
|
38 |
+
self.freq_pad = torch.zeros(
|
39 |
+
[1, out_c, self.n_bins - self.dim_f, self.dim_t]
|
40 |
+
).to(device)
|
41 |
+
|
42 |
+
def stft(self, x):
|
43 |
+
"""
|
44 |
+
computes the Fourier transform of short overlapping windows of the input
|
45 |
+
"""
|
46 |
+
x = x.reshape([-1, self.chunk_size])
|
47 |
+
x = torch.stft(
|
48 |
+
x,
|
49 |
+
n_fft=self.n_fft,
|
50 |
+
hop_length=self.hop,
|
51 |
+
window=self.window,
|
52 |
+
center=True,
|
53 |
+
return_complex=True,
|
54 |
+
)
|
55 |
+
x = torch.view_as_real(x)
|
56 |
+
x = x.permute([0, 3, 1, 2])
|
57 |
+
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
|
58 |
+
[-1, 4, self.n_bins, self.dim_t]
|
59 |
+
)
|
60 |
+
return x[:, :, : self.dim_f]
|
61 |
+
|
62 |
+
def istft(self, x, freq_pad=None):
|
63 |
+
"""
|
64 |
+
computes the inverse Fourier transform of short overlapping windows of the input
|
65 |
+
"""
|
66 |
+
freq_pad = (
|
67 |
+
self.freq_pad.repeat([x.shape[0], 1, 1, 1])
|
68 |
+
if freq_pad is None
|
69 |
+
else freq_pad
|
70 |
+
)
|
71 |
+
x = torch.cat([x, freq_pad], -2)
|
72 |
+
# c = 4*2 if self.target_name=='*' else 2
|
73 |
+
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
|
74 |
+
[-1, 2, self.n_bins, self.dim_t]
|
75 |
+
)
|
76 |
+
x = x.permute([0, 2, 3, 1])
|
77 |
+
x = x.contiguous()
|
78 |
+
x = torch.view_as_complex(x)
|
79 |
+
x = torch.istft(
|
80 |
+
x,
|
81 |
+
n_fft=self.n_fft,
|
82 |
+
hop_length=self.hop,
|
83 |
+
window=self.window,
|
84 |
+
center=True,
|
85 |
+
)
|
86 |
+
return x.reshape([-1, 2, self.chunk_size])
|
87 |
+
|
88 |
+
|
89 |
+
class MDX:
|
90 |
+
DEFAULT_SR = 44100 # unit: Hz
|
91 |
+
# Unit: seconds
|
92 |
+
DEFAULT_CHUNK_SIZE = 0 * DEFAULT_SR
|
93 |
+
DEFAULT_MARGIN_SIZE = 1 * DEFAULT_SR
|
94 |
+
|
95 |
+
def __init__(self, model_path: str, params: MDXModel, processor=0):
|
96 |
+
# Set the device and the provider (CPU or CUDA)
|
97 |
+
self.device = (
|
98 |
+
torch.device(f"cuda:{processor}")
|
99 |
+
if processor >= 0
|
100 |
+
else torch.device("cpu")
|
101 |
+
)
|
102 |
+
self.provider = (
|
103 |
+
["CUDAExecutionProvider"]
|
104 |
+
if processor >= 0
|
105 |
+
else ["CPUExecutionProvider"]
|
106 |
+
)
|
107 |
+
|
108 |
+
self.model = params
|
109 |
+
|
110 |
+
# Load the ONNX model using ONNX Runtime
|
111 |
+
self.ort = ort.InferenceSession(model_path, providers=self.provider)
|
112 |
+
# Preload the model for faster performance
|
113 |
+
self.ort.run(
|
114 |
+
None,
|
115 |
+
{"input": torch.rand(1, 4, params.dim_f, params.dim_t).numpy()},
|
116 |
+
)
|
117 |
+
self.process = lambda spec: self.ort.run(
|
118 |
+
None, {"input": spec.cpu().numpy()}
|
119 |
+
)[0]
|
120 |
+
|
121 |
+
self.prog = None
|
122 |
+
|
123 |
+
@staticmethod
|
124 |
+
def get_hash(model_path: str) -> str:
|
125 |
+
try:
|
126 |
+
with open(model_path, "rb") as f:
|
127 |
+
f.seek(-10000 * 1024, 2)
|
128 |
+
model_hash = hashlib.md5(f.read()).hexdigest()
|
129 |
+
except: # noqa
|
130 |
+
model_hash = hashlib.md5(open(model_path, "rb").read()).hexdigest()
|
131 |
+
|
132 |
+
return model_hash
|
133 |
+
|
134 |
+
@staticmethod
|
135 |
+
def segment(
|
136 |
+
wave,
|
137 |
+
combine=True,
|
138 |
+
chunk_size=DEFAULT_CHUNK_SIZE,
|
139 |
+
margin_size=DEFAULT_MARGIN_SIZE,
|
140 |
+
):
|
141 |
+
"""
|
142 |
+
Segment or join segmented wave array
|
143 |
+
|
144 |
+
Args:
|
145 |
+
wave: (np.array) Wave array to be segmented or joined
|
146 |
+
combine: (bool) If True, combines segmented wave array.
|
147 |
+
If False, segments wave array.
|
148 |
+
chunk_size: (int) Size of each segment (in samples)
|
149 |
+
margin_size: (int) Size of margin between segments (in samples)
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
numpy array: Segmented or joined wave array
|
153 |
+
"""
|
154 |
+
|
155 |
+
if combine:
|
156 |
+
# Initializing as None instead of [] for later numpy array concatenation
|
157 |
+
processed_wave = None
|
158 |
+
for segment_count, segment in enumerate(wave):
|
159 |
+
start = 0 if segment_count == 0 else margin_size
|
160 |
+
end = None if segment_count == len(wave) - 1 else -margin_size
|
161 |
+
if margin_size == 0:
|
162 |
+
end = None
|
163 |
+
if processed_wave is None: # Create array for first segment
|
164 |
+
processed_wave = segment[:, start:end]
|
165 |
+
else: # Concatenate to existing array for subsequent segments
|
166 |
+
processed_wave = np.concatenate(
|
167 |
+
(processed_wave, segment[:, start:end]), axis=-1
|
168 |
+
)
|
169 |
+
|
170 |
+
else:
|
171 |
+
processed_wave = []
|
172 |
+
sample_count = wave.shape[-1]
|
173 |
+
|
174 |
+
if chunk_size <= 0 or chunk_size > sample_count:
|
175 |
+
chunk_size = sample_count
|
176 |
+
|
177 |
+
if margin_size > chunk_size:
|
178 |
+
margin_size = chunk_size
|
179 |
+
|
180 |
+
for segment_count, skip in enumerate(
|
181 |
+
range(0, sample_count, chunk_size)
|
182 |
+
):
|
183 |
+
margin = 0 if segment_count == 0 else margin_size
|
184 |
+
end = min(skip + chunk_size + margin_size, sample_count)
|
185 |
+
start = skip - margin
|
186 |
+
|
187 |
+
cut = wave[:, start:end].copy()
|
188 |
+
processed_wave.append(cut)
|
189 |
+
|
190 |
+
if end == sample_count:
|
191 |
+
break
|
192 |
+
|
193 |
+
return processed_wave
|
194 |
+
|
195 |
+
def pad_wave(self, wave):
|
196 |
+
"""
|
197 |
+
Pad the wave array to match the required chunk size
|
198 |
+
|
199 |
+
Args:
|
200 |
+
wave: (np.array) Wave array to be padded
|
201 |
+
|
202 |
+
Returns:
|
203 |
+
tuple: (padded_wave, pad, trim)
|
204 |
+
- padded_wave: Padded wave array
|
205 |
+
- pad: Number of samples that were padded
|
206 |
+
- trim: Number of samples that were trimmed
|
207 |
+
"""
|
208 |
+
n_sample = wave.shape[1]
|
209 |
+
trim = self.model.n_fft // 2
|
210 |
+
gen_size = self.model.chunk_size - 2 * trim
|
211 |
+
pad = gen_size - n_sample % gen_size
|
212 |
+
|
213 |
+
# Padded wave
|
214 |
+
wave_p = np.concatenate(
|
215 |
+
(
|
216 |
+
np.zeros((2, trim)),
|
217 |
+
wave,
|
218 |
+
np.zeros((2, pad)),
|
219 |
+
np.zeros((2, trim)),
|
220 |
+
),
|
221 |
+
1,
|
222 |
+
)
|
223 |
+
|
224 |
+
mix_waves = []
|
225 |
+
for i in range(0, n_sample + pad, gen_size):
|
226 |
+
waves = np.array(wave_p[:, i:i + self.model.chunk_size])
|
227 |
+
mix_waves.append(waves)
|
228 |
+
|
229 |
+
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(
|
230 |
+
self.device
|
231 |
+
)
|
232 |
+
|
233 |
+
return mix_waves, pad, trim
|
234 |
+
|
235 |
+
def _process_wave(self, mix_waves, trim, pad, q: queue.Queue, _id: int):
|
236 |
+
"""
|
237 |
+
Process each wave segment in a multi-threaded environment
|
238 |
+
|
239 |
+
Args:
|
240 |
+
mix_waves: (torch.Tensor) Wave segments to be processed
|
241 |
+
trim: (int) Number of samples trimmed during padding
|
242 |
+
pad: (int) Number of samples padded during padding
|
243 |
+
q: (queue.Queue) Queue to hold the processed wave segments
|
244 |
+
_id: (int) Identifier of the processed wave segment
|
245 |
+
|
246 |
+
Returns:
|
247 |
+
numpy array: Processed wave segment
|
248 |
+
"""
|
249 |
+
mix_waves = mix_waves.split(1)
|
250 |
+
with torch.no_grad():
|
251 |
+
pw = []
|
252 |
+
for mix_wave in mix_waves:
|
253 |
+
self.prog.update()
|
254 |
+
spec = self.model.stft(mix_wave)
|
255 |
+
processed_spec = torch.tensor(self.process(spec))
|
256 |
+
processed_wav = self.model.istft(
|
257 |
+
processed_spec.to(self.device)
|
258 |
+
)
|
259 |
+
processed_wav = (
|
260 |
+
processed_wav[:, :, trim:-trim]
|
261 |
+
.transpose(0, 1)
|
262 |
+
.reshape(2, -1)
|
263 |
+
.cpu()
|
264 |
+
.numpy()
|
265 |
+
)
|
266 |
+
pw.append(processed_wav)
|
267 |
+
processed_signal = np.concatenate(pw, axis=-1)[:, :-pad]
|
268 |
+
q.put({_id: processed_signal})
|
269 |
+
return processed_signal
|
270 |
+
|
271 |
+
def process_wave(self, wave: np.array, mt_threads=1):
|
272 |
+
"""
|
273 |
+
Process the wave array in a multi-threaded environment
|
274 |
+
|
275 |
+
Args:
|
276 |
+
wave: (np.array) Wave array to be processed
|
277 |
+
mt_threads: (int) Number of threads to be used for processing
|
278 |
+
|
279 |
+
Returns:
|
280 |
+
numpy array: Processed wave array
|
281 |
+
"""
|
282 |
+
self.prog = tqdm(total=0)
|
283 |
+
chunk = wave.shape[-1] // mt_threads
|
284 |
+
waves = self.segment(wave, False, chunk)
|
285 |
+
|
286 |
+
# Create a queue to hold the processed wave segments
|
287 |
+
q = queue.Queue()
|
288 |
+
threads = []
|
289 |
+
for c, batch in enumerate(waves):
|
290 |
+
mix_waves, pad, trim = self.pad_wave(batch)
|
291 |
+
self.prog.total = len(mix_waves) * mt_threads
|
292 |
+
thread = threading.Thread(
|
293 |
+
target=self._process_wave, args=(mix_waves, trim, pad, q, c)
|
294 |
+
)
|
295 |
+
thread.start()
|
296 |
+
threads.append(thread)
|
297 |
+
for thread in threads:
|
298 |
+
thread.join()
|
299 |
+
self.prog.close()
|
300 |
+
|
301 |
+
processed_batches = []
|
302 |
+
while not q.empty():
|
303 |
+
processed_batches.append(q.get())
|
304 |
+
processed_batches = [
|
305 |
+
list(wave.values())[0]
|
306 |
+
for wave in sorted(
|
307 |
+
processed_batches, key=lambda d: list(d.keys())[0]
|
308 |
+
)
|
309 |
+
]
|
310 |
+
assert len(processed_batches) == len(
|
311 |
+
waves
|
312 |
+
), "Incomplete processed batches, please reduce batch size!"
|
313 |
+
return self.segment(processed_batches, True, chunk)
|