bgmseparator / uvr_processing.py
masszhou's picture
fix tensor type
0ec3ee3
raw
history blame
8.92 kB
import torch
import json
import gc
import spaces
import librosa
import soundfile as sf
import numpy as np
from pathlib import Path
from typing import Dict, Tuple
from utils import convert_to_stereo_and_wav
from mdxnet_model import MDX, MDXModel
import time
STEM_NAMING = {
"Vocals": "Instrumental",
"Other": "Instruments",
"Instrumental": "Vocals",
"Drums": "Drumless",
"Bass": "Bassless",
}
@spaces.GPU()
def run_mdx(model_params: Dict,
input_filename: Path,
output_dir: Path,
model_path: Path,
denoise: bool = False,
m_threads: int = 2,
device_base: str = "cuda",
) -> Tuple[str, str]:
"""
Separate vocals using MDX model
"""
if device_base == "cuda":
device = torch.device("cuda:0")
processor_num = 0
device_properties = torch.cuda.get_device_properties(device)
vram_gb = device_properties.total_memory / 1024**3
m_threads = 1 if vram_gb < 8 else (8 if vram_gb > 32 else 2)
else:
device = torch.device("cpu")
processor_num = -1
m_threads = 1
print(f"device: {device}")
model_hash = MDX.get_hash(model_path) # type: str
mp = model_params.get(model_hash)
model = MDXModel(
device,
dim_f=mp["mdx_dim_f_set"],
dim_t=2 ** mp["mdx_dim_t_set"],
n_fft=mp["mdx_n_fft_scale_set"],
stem_name=mp["primary_stem"],
compensation=mp["compensate"],
)
mdx_sess = MDX(model_path, model, processor=processor_num)
wave, sr = librosa.load(input_filename, mono=False, sr=44100)
# normalizing input wave gives better output
peak = max(np.max(wave), abs(np.min(wave)))
wave /= peak
if denoise:
wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (mdx_sess.process_wave(wave, m_threads)) # type: np.array
wave_processed *= 0.5
else:
wave_processed = mdx_sess.process_wave(wave, m_threads)
# return to previous peak
wave_processed *= peak
stem_name = model.stem_name
# output main track
main_filepath = output_dir / input_filename.with_name(f"{input_filename.stem}_{stem_name}.wav")
sf.write(main_filepath, wave_processed.T, sr)
# output reverse track
invert_filepath = output_dir / input_filename.with_name(f"{input_filename.stem}_{stem_name}_reverse.wav")
sf.write(invert_filepath, (-wave_processed.T * model.compensation) + wave.T, sr)
del mdx_sess, wave_processed, wave
gc.collect()
torch.cuda.empty_cache()
return main_filepath, invert_filepath
def run_mdx_cpu(model_params: Dict,
input_filename: Path,
output_dir: Path,
model_path: Path,
denoise: bool = False,
m_threads: int = 2,
device_base: str = ""):
print("run_mdx_cpu")
m_threads = 1
duration = librosa.get_duration(filename=input_filename)
if duration >= 60 and duration <= 120:
m_threads = 8
elif duration > 120:
m_threads = 16
model_hash = MDX.get_hash(model_path)
device = torch.device("cpu")
processor_num = -1
mp = model_params.get(model_hash)
model = MDXModel(
device,
dim_f=mp["mdx_dim_f_set"],
dim_t=2 ** mp["mdx_dim_t_set"],
n_fft=mp["mdx_n_fft_scale_set"],
stem_name=mp["primary_stem"],
compensation=mp["compensate"],
)
mdx_sess = MDX(model_path, model, processor=processor_num)
wave, sr = librosa.load(input_filename, mono=False, sr=44100)
# normalizing input wave gives better output
peak = max(np.max(wave), abs(np.min(wave)))
wave /= peak
if denoise:
wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (
mdx_sess.process_wave(wave, m_threads)
)
wave_processed *= 0.5
else:
wave_processed = mdx_sess.process_wave(wave, m_threads)
# return to previous peak
wave_processed *= peak
stem_name = model.stem_name
# output main track
main_filepath = output_dir / input_filename.with_name(f"{input_filename.stem}_{stem_name}.wav")
sf.write(main_filepath, wave_processed.T, sr)
# output reverse track
invert_filepath = output_dir / input_filename.with_name(f"{input_filename.stem}_{stem_name}_reverse.wav")
sf.write(invert_filepath, (-wave_processed.T * model.compensation) + wave.T, sr)
del mdx_sess, wave_processed, wave
gc.collect()
torch.cuda.empty_cache()
return main_filepath, invert_filepath
def extract_bgm(mdx_model_params: Dict,
input_filename: Path,
model_bgm_path: Path,
output_dir: Path,
device_base: str = "cuda") -> Path:
"""
Extract pure background music, remove vocals
"""
background_path, _ = run_mdx(model_params=mdx_model_params,
input_filename=input_filename,
output_dir=output_dir,
model_path=model_bgm_path,
denoise=False,
device_base=device_base,
)
return background_path
def extract_vocal(mdx_model_params: Dict,
input_filename: Path,
model_basic_vocal_path: Path,
model_main_vocal_path: Path,
output_dir: Path,
main_vocals_flag: bool = False,
device_base: str = "cuda") -> Path:
"""
Extract vocals
"""
# First use UVR-MDX-NET-Voc_FT.onnx basic vocal separation model
vocals_path, _ = run_mdx(mdx_model_params,
input_filename,
output_dir,
model_basic_vocal_path,
denoise=True,
device_base=device_base,
)
# If "main_vocals_flag" is enabled, use UVR_MDXNET_KARA_2.onnx to further separate main vocals (Main) from backup vocals/background vocals (Backup)
if main_vocals_flag:
time.sleep(2)
backup_vocals_path, main_vocals_path = run_mdx(mdx_model_params,
output_dir,
model_main_vocal_path,
vocals_path,
denoise=True,
device_base=device_base,
)
vocals_path = main_vocals_path
# If "dereverb_flag" is enabled, use Reverb_HQ_By_FoxJoy.onnx for dereverberation
# deactived since Model license unknown
# if dereverb_flag:
# time.sleep(2)
# _, vocals_dereverb_path = run_mdx(mdx_model_params,
# output_dir,
# mdxnet_models_dir/"Reverb_HQ_By_FoxJoy.onnx",
# vocals_path,
# denoise=True,
# device_base=device_base,
# )
# vocals_path = vocals_dereverb_path
return vocals_path
def process_uvr_task(input_file_path: Path,
output_dir: Path,
models_path: Dict[str, Path],
main_vocals_flag: bool = False, # If "Main" is enabled, use UVR_MDXNET_KARA_2.onnx to further separate main and backup vocals
) -> Tuple[Path, Path]:
device_base = "cuda" if torch.cuda.is_available() else "cpu"
# load mdx model definition
with open("./mdx_models/model_data.json") as infile:
mdx_model_params = json.load(infile) # type: Dict
output_dir.mkdir(parents=True, exist_ok=True)
input_file_path = convert_to_stereo_and_wav(input_file_path) # type: Path
# 1. Extract pure background music, remove vocals
background_path = extract_bgm(mdx_model_params,
input_file_path,
models_path["bgm"],
output_dir,
device_base=device_base)
# 2. Separate vocals
# First use UVR-MDX-NET-Voc_FT.onnx basic vocal separation model
vocals_path = extract_vocal(mdx_model_params,
input_file_path,
models_path["basic_vocal"],
models_path["main_vocal"],
output_dir,
main_vocals_flag=main_vocals_flag,
device_base=device_base)
return background_path, vocals_path