import gradio as gr import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation import io import librosa import tempfile def extract_waveform_animation(audio_file, window_seconds=5): y, sr = librosa.load(audio_file, sr=None) duration = librosa.get_duration(y=y, sr=sr) FPS = 30 fig, ax = plt.subplots() line, = ax.plot([], [], lw=2) window_length = int(window_seconds * sr / FPS) # Initialize with first window first_window = y[:window_length] x_vals = np.linspace(0, duration, num=len(y)) ax.set_axis_off() fig.set_facecolor("black") def init(): ax.set_xlim(0, window_seconds) ax.set_ylim(np.min(y), np.max(y)) # Reduced max for visibility return line, def update(frame): # Get current window start = frame * sr end = start + window_length window = y[start:end] # Update x and y limits ax.set_xlim(frame, frame + window_seconds) # Update line data line.set_data(x_vals[start:end], window) return line, total_frames = int(duration) * FPS ani = FuncAnimation(fig, update, frames=range(total_frames), init_func=init, interval=window_seconds, blit=False) with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile: ani.save(tmpfile.name, writer='ffmpeg', fps=FPS) video_path = tmpfile.name return video_path # Modified interface with window controls iface = gr.Interface( fn=extract_waveform_animation, inputs=[ gr.Audio(type="filepath"), gr.Slider(1, 10, value=5, step=1, label="Window Size (seconds)") ], outputs=gr.Video(), description="Scroll through audio waveform with a moving window." ) if __name__ == "__main__": iface.launch()