Spaces:
Sleeping
Sleeping
Update app.py
Browse filesadded 4 bit quantization code
added examples
app.py
CHANGED
@@ -1,73 +1,102 @@
|
|
1 |
import os
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
from peft import PeftModel
|
6 |
|
7 |
-
#
|
8 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
9 |
|
10 |
-
#
|
11 |
BASE_MODEL = "google/gemma-3-1b-it"
|
12 |
-
LORA_ADAPTER = "markredito/gemma-pip-finetuned-v2" # 🔁
|
13 |
|
14 |
-
#
|
15 |
-
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, token=HF_TOKEN)
|
16 |
-
|
17 |
-
# Detect if GPU is available
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
model = AutoModelForCausalLM.from_pretrained(
|
22 |
BASE_MODEL,
|
23 |
-
device_map="auto"
|
24 |
-
torch_dtype=
|
25 |
-
|
|
|
|
|
26 |
)
|
27 |
|
28 |
-
model = PeftModel.from_pretrained(
|
29 |
-
model,
|
30 |
-
LORA_ADAPTER,
|
31 |
-
token=HF_TOKEN
|
32 |
-
)
|
33 |
|
34 |
# Pad token fallback
|
35 |
if tokenizer.pad_token is None:
|
36 |
tokenizer.pad_token = tokenizer.eos_token
|
37 |
tokenizer.padding_side = "right"
|
38 |
|
39 |
-
|
40 |
-
|
|
|
41 |
"<start_of_turn>user\n"
|
42 |
-
f"{
|
43 |
"<end_of_turn>\n"
|
44 |
"<start_of_turn>model\n"
|
45 |
)
|
46 |
-
|
47 |
-
|
|
|
48 |
outputs = model.generate(
|
49 |
**inputs,
|
50 |
max_new_tokens=200,
|
51 |
do_sample=True,
|
52 |
-
temperature=
|
53 |
-
top_p=
|
54 |
-
top_k=
|
55 |
pad_token_id=tokenizer.pad_token_id,
|
56 |
eos_token_id=tokenizer.eos_token_id,
|
57 |
)
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
return response
|
64 |
|
65 |
# Gradio UI
|
66 |
-
gr.
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
5 |
from peft import PeftModel
|
6 |
|
7 |
+
# Hugging Face Token from Space Secrets
|
8 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
9 |
|
10 |
+
# Model IDs
|
11 |
BASE_MODEL = "google/gemma-3-1b-it"
|
12 |
+
LORA_ADAPTER = "markredito/gemma-pip-finetuned-v2" # 🔁 Replace with your actual LoRA repo
|
13 |
|
14 |
+
# Check device
|
|
|
|
|
|
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
|
17 |
+
# Quantization config for 4-bit (recommended on T4 GPU)
|
18 |
+
bnb_config = BitsAndBytesConfig(
|
19 |
+
load_in_4bit=True,
|
20 |
+
bnb_4bit_quant_type="nf4",
|
21 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
22 |
+
bnb_4bit_use_double_quant=True,
|
23 |
+
)
|
24 |
+
|
25 |
+
# Load tokenizer and model
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, token=HF_TOKEN)
|
27 |
|
28 |
model = AutoModelForCausalLM.from_pretrained(
|
29 |
BASE_MODEL,
|
30 |
+
device_map="auto",
|
31 |
+
torch_dtype=torch.bfloat16,
|
32 |
+
quantization_config=bnb_config,
|
33 |
+
token=HF_TOKEN,
|
34 |
+
attn_implementation="eager" # Required for Gemma3 + quant
|
35 |
)
|
36 |
|
37 |
+
model = PeftModel.from_pretrained(model, LORA_ADAPTER, token=HF_TOKEN)
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# Pad token fallback
|
40 |
if tokenizer.pad_token is None:
|
41 |
tokenizer.pad_token = tokenizer.eos_token
|
42 |
tokenizer.padding_side = "right"
|
43 |
|
44 |
+
# Generation function
|
45 |
+
def generate_response(prompt, temperature, top_p, top_k):
|
46 |
+
formatted = (
|
47 |
"<start_of_turn>user\n"
|
48 |
+
f"{prompt.strip()}\n"
|
49 |
"<end_of_turn>\n"
|
50 |
"<start_of_turn>model\n"
|
51 |
)
|
52 |
+
|
53 |
+
inputs = tokenizer(formatted, return_tensors="pt").to(model.device)
|
54 |
+
|
55 |
outputs = model.generate(
|
56 |
**inputs,
|
57 |
max_new_tokens=200,
|
58 |
do_sample=True,
|
59 |
+
temperature=temperature,
|
60 |
+
top_p=top_p,
|
61 |
+
top_k=top_k,
|
62 |
pad_token_id=tokenizer.pad_token_id,
|
63 |
eos_token_id=tokenizer.eos_token_id,
|
64 |
)
|
65 |
|
66 |
+
decoded = tokenizer.decode(outputs[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
|
67 |
+
cleaned = decoded.split("<end_of_turn>")[0].replace("model\n", "").strip()
|
68 |
+
return cleaned
|
|
|
|
|
69 |
|
70 |
# Gradio UI
|
71 |
+
with gr.Blocks() as demo:
|
72 |
+
gr.Markdown("## ✨ Gemma LoRA Inference Demo")
|
73 |
+
gr.Markdown("Use your imagination or try one of the examples below to explore poetic and philosophical responses.")
|
74 |
+
|
75 |
+
examples = [
|
76 |
+
"Describe a world where clouds are solid and people walk on them",
|
77 |
+
"Contrast quantum realities phenomena from the perspective of a starship navigator, using a spiral into infinity.",
|
78 |
+
"Dream up futuristic phenomena from the perspective of a timeless oracle, using a fractal blooming in chaos.",
|
79 |
+
]
|
80 |
+
|
81 |
+
with gr.Row():
|
82 |
+
with gr.Column():
|
83 |
+
prompt_input = gr.Textbox(label="Enter your prompt", lines=4, placeholder="Try something like: What if gravity took a day off?")
|
84 |
+
|
85 |
+
gr.Examples(
|
86 |
+
examples=examples,
|
87 |
+
inputs=prompt_input,
|
88 |
+
label="Example Prompts"
|
89 |
+
)
|
90 |
+
|
91 |
+
temperature = gr.Slider(0.1, 1.5, value=0.7, label="Temperature")
|
92 |
+
top_p = gr.Slider(0.1, 1.0, value=0.9, label="Top-p (nucleus sampling)")
|
93 |
+
top_k = gr.Slider(0, 100, step=1, value=50, label="Top-k")
|
94 |
+
|
95 |
+
submit = gr.Button("Generate")
|
96 |
+
|
97 |
+
with gr.Column():
|
98 |
+
output = gr.Textbox(label="Model Response", lines=10)
|
99 |
+
|
100 |
+
submit.click(fn=generate_response, inputs=[prompt_input, temperature, top_p, top_k], outputs=output)
|
101 |
+
|
102 |
+
demo.launch()
|