Spaces:
Sleeping
Sleeping
fixed token reqs
Browse files
app.py
CHANGED
@@ -1,18 +1,37 @@
|
|
|
|
1 |
import torch
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
from peft import PeftModel
|
4 |
-
import gradio as gr
|
5 |
|
6 |
-
#
|
|
|
|
|
|
|
7 |
BASE_MODEL = "google/gemma-3-1b-it"
|
8 |
-
LORA_ADAPTER = "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
if tokenizer.pad_token is None:
|
17 |
tokenizer.pad_token = tokenizer.eos_token
|
18 |
tokenizer.padding_side = "right"
|
@@ -25,6 +44,7 @@ def generate_response(user_input):
|
|
25 |
"<start_of_turn>model\n"
|
26 |
)
|
27 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
28 |
outputs = model.generate(
|
29 |
**inputs,
|
30 |
max_new_tokens=200,
|
@@ -32,18 +52,22 @@ def generate_response(user_input):
|
|
32 |
temperature=0.7,
|
33 |
top_p=0.9,
|
34 |
top_k=50,
|
35 |
-
eos_token_id=tokenizer.eos_token_id,
|
36 |
pad_token_id=tokenizer.pad_token_id,
|
|
|
37 |
)
|
|
|
|
|
38 |
response = tokenizer.decode(outputs[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
|
39 |
-
response = response.split("<end_of_turn>")[0].strip()
|
|
|
40 |
return response
|
41 |
|
42 |
# Gradio UI
|
43 |
gr.Interface(
|
44 |
fn=generate_response,
|
45 |
-
inputs=gr.Textbox(label="Enter your prompt"),
|
46 |
-
outputs=gr.Textbox(label="Model response"),
|
47 |
-
title="Gemma LoRA:
|
48 |
-
description="LoRA fine-tuned
|
|
|
49 |
).launch()
|
|
|
1 |
+
import os
|
2 |
import torch
|
3 |
+
import gradio as gr
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
from peft import PeftModel
|
|
|
6 |
|
7 |
+
# Read your Hugging Face token from Space Secrets
|
8 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
9 |
+
|
10 |
+
# Hugging Face model identifiers
|
11 |
BASE_MODEL = "google/gemma-3-1b-it"
|
12 |
+
LORA_ADAPTER = "your-username/your-lora-repo" # 🔁 Replace this with your adapter repo
|
13 |
+
|
14 |
+
# Load base model with token (required for gated models)
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, token=HF_TOKEN)
|
16 |
+
|
17 |
+
# Detect if GPU is available
|
18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
dtype = torch.bfloat16 if device == "cuda" else torch.float32
|
20 |
|
21 |
+
model = AutoModelForCausalLM.from_pretrained(
|
22 |
+
BASE_MODEL,
|
23 |
+
device_map="auto" if device == "cuda" else None,
|
24 |
+
torch_dtype=dtype,
|
25 |
+
token=HF_TOKEN
|
26 |
+
)
|
27 |
|
28 |
+
model = PeftModel.from_pretrained(
|
29 |
+
model,
|
30 |
+
LORA_ADAPTER,
|
31 |
+
token=HF_TOKEN
|
32 |
+
)
|
33 |
+
|
34 |
+
# Pad token fallback
|
35 |
if tokenizer.pad_token is None:
|
36 |
tokenizer.pad_token = tokenizer.eos_token
|
37 |
tokenizer.padding_side = "right"
|
|
|
44 |
"<start_of_turn>model\n"
|
45 |
)
|
46 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
47 |
+
|
48 |
outputs = model.generate(
|
49 |
**inputs,
|
50 |
max_new_tokens=200,
|
|
|
52 |
temperature=0.7,
|
53 |
top_p=0.9,
|
54 |
top_k=50,
|
|
|
55 |
pad_token_id=tokenizer.pad_token_id,
|
56 |
+
eos_token_id=tokenizer.eos_token_id,
|
57 |
)
|
58 |
+
|
59 |
+
# Decode and clean output
|
60 |
response = tokenizer.decode(outputs[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
|
61 |
+
response = response.split("<end_of_turn>")[0].replace("model\n", "").strip()
|
62 |
+
|
63 |
return response
|
64 |
|
65 |
# Gradio UI
|
66 |
gr.Interface(
|
67 |
fn=generate_response,
|
68 |
+
inputs=gr.Textbox(label="Enter your prompt", placeholder="E.g. Describe a universe made of sound..."),
|
69 |
+
outputs=gr.Textbox(label="Model's response"),
|
70 |
+
title="Gemma LoRA: Abstract Thought Generator",
|
71 |
+
description="LoRA fine-tuned `gemma-3-1b-it` on poetic/philosophical prompts. Run your own abstract experiments.",
|
72 |
+
theme="soft"
|
73 |
).launch()
|