# /// script # requires-python = ">=3.13" # dependencies = [ # "duckdb==1.2.2", # "marimo", # "polars==1.29.0", # "pyarrow==20.0.0", # "sqlglot==26.16.4", # ] # /// import marimo __generated_with = "0.13.11" app = marimo.App(width="medium", app_title="Window Functions") @app.cell(hide_code=True) def _(mo): mo.md( r""" # Window Functions _By [Henry Harbeck](https://github.com/henryharbeck)._ In this notebook, you'll learn how to perform different types of window functions in Polars. You'll work with partitions, ordering and Polars' available "mapping strategies". We'll use a dataset with a few days of paid and organic digital revenue data. """ ) return @app.cell def _(): from datetime import date import polars as pl dates = pl.date_range(date(2025, 2, 1), date(2025, 2, 5), eager=True) df = pl.DataFrame( { "date": pl.concat([dates, dates]).sort(), "channel": ["Paid", "Organic"] * 5, "revenue": [6000, 2000, 5200, 4500, 4200, 5900, 3500, 5000, 4800, 4800], } ) df return date, df, pl @app.cell(hide_code=True) def _(mo): mo.md( r""" ## What is a window function? A window function performs a calculation across a set of rows that are related to the current row. They allow you to perform aggregations and other calculations within a group without collapsing the number of rows (opposed to a group by aggregation, which does collapse the number of rows). Typically the result of a window function is assigned back to rows within the group, but Polars also offers additional alternatives. Window functions can be used by specifying the [`over`](https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.over.html) method on an expression. """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## Partitions Partitions are the "group by" columns. We will have one "window" of data per unique value in the partition column(s), to which the function will be applied. """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ### Partitioning by a single column Let's get the total revenue per date... """ ) return @app.cell def _(df, pl): daily_revenue = pl.col("revenue").sum().over("date") df.with_columns(daily_revenue.alias("daily_revenue")) return (daily_revenue,) @app.cell(hide_code=True) def _(mo): mo.md(r"""And then see what percentage of the daily total was Paid and what percentage was Organic.""") return @app.cell def _(daily_revenue, df, pl): df.with_columns(daily_revenue_pct=(pl.col("revenue") / daily_revenue)) return @app.cell(hide_code=True) def _(mo): mo.md( r""" Let's now calculate the maximum revenue, cumulative revenue, rank the revenue and calculate the day-on-day change, all partitioned (split) by channel. """ ) return @app.cell def _(df, pl): df.with_columns( maximum_revenue=pl.col("revenue").max().over("channel"), cumulative_revenue=pl.col("revenue").cum_sum().over("channel"), revenue_rank=pl.col("revenue").rank(descending=True).over("channel"), day_on_day_change=pl.col("revenue").diff().over("channel"), ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" Note that aggregation functions such as `sum` and `max` have their value applied back to each row in the partition (group). Non-aggregate functions such as `cum_sum`, `rank` and `diff` can produce different values per row, but still only consider rows within their partition. """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ### Partitioning by multiple columns We can also partition by multiple columns. Let's add a column to see whether it is a weekday (business day), then get the maximum revenue by that and the channel. """ ) return @app.cell def _(df, pl): ( df.with_columns( is_weekday=pl.col("date").dt.is_business_day(), ).with_columns( max_rev_by_channel_and_weekday=pl.col("revenue").max().over("is_weekday", "channel"), ) ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ### Partitioning by expressions Polars also lets you partition by expressions without needing to create them as columns first. So, we could re-write the previous window function as... """ ) return @app.cell def _(df, pl): df.with_columns( max_rev_by_channel_and_weekday=pl.col("revenue") .max() .over((pl.col("date").dt.is_business_day()), "channel") ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" Window functions fit into Polars' composable [expressions API](https://docs.pola.rs/user-guide/concepts/expressions-and-contexts/#expressions), so can be combined with all [aggregation methods](https://docs.pola.rs/api/python/stable/reference/expressions/aggregation.html) and methods that consider more than 1 row (e.g., `cum_sum`, `rank` and `diff` as we just saw). """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## Ordering The `order_by` parameter controls how to order the data within the window. The function is applied to the data in this order. Up until this point, we have been letting Polars do the window function calculations based on the order of the rows in the DataFrame. There can be times where we would like order of the calculation and the order of the output itself to differ. """ ) return @app.cell(hide_code=True) def _(mo): mo.md( """ ### Ordering in a window function Let's say we want the DataFrame ordered by day of week, but we still want cumulative revenue and the first revenue observation, both ordered by date and partitioned by channel... """ ) return @app.cell def _(df, pl): df_sorted = ( # Monday = 1, Sunday = 7 df.sort(pl.col("date").dt.weekday()) # Show the weekday for transparency .with_columns(pl.col("date").dt.to_string("%a").alias("weekday")) ) df_sorted.select( "date", "weekday", "channel", "revenue", pl.col("revenue").cum_sum().over("channel", order_by="date").alias("cumulative_revenue"), pl.col("revenue").first().over("channel", order_by="date").alias("first_revenue"), ) return (df_sorted,) @app.cell(hide_code=True) def _(mo): mo.md( r""" ### Note about window function ordering compared to SQL It is worth noting that traditionally in SQL, many more functions require an `ORDER BY` within `OVER` than in equivalent functions in Polars. For example, an SQL `RANK()` expression like... """ ) return @app.cell def _(df, mo): _df = mo.sql( f""" SELECT date, channel, revenue, RANK() OVER (PARTITION BY channel ORDER BY revenue DESC) AS revenue_rank FROM df -- re-sort the output back to the original order for ease of comparison ORDER BY date, channel DESC """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ...does not require an `order_by` in Polars as the column and the function are already bound (including with the `descending=True` argument). """ ) return @app.cell def _(df, pl): df.select( "date", "channel", "revenue", revenue_rank=pl.col("revenue").rank(descending=True).over("channel"), ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ### Descending order We can also order in descending order by passing `descending=True`... """ ) return @app.cell def _(df_sorted, pl): ( df_sorted.select( "date", "weekday", "channel", "revenue", pl.col("revenue").cum_sum().over("channel", order_by="date").alias("cumulative_revenue"), pl.col("revenue").first().over("channel", order_by="date").alias("first_revenue"), pl.col("revenue") .first() .over("channel", order_by="date", descending=True) .alias("last_revenue"), # Or, alternatively pl.col("revenue").last().over("channel", order_by="date").alias("also_last_revenue"), ) ) return @app.cell(hide_code=True) def _(mo): mo.md( """ ## Mapping Strategies Mapping Strategies control how Polars maps the result of the window function back to the original DataFrame Generally (by default) the result of a window function is assigned back to rows within the group. Through Polars' mapping strategies, we will explore other possibilities. """ ) return @app.cell(hide_code=True) def _(mo): mo.md( """ ### Group to rows "group_to_rows" is the default mapping strategy and assigns the result of the window function back to the rows in the window. """ ) return @app.cell def _(df, pl): df.with_columns( cumulative_revenue=pl.col("revenue").cum_sum().over("channel", mapping_strategy="group_to_rows") ) return @app.cell(hide_code=True) def _(mo): mo.md( """ ### Join The "join" mapping strategy aggregates the resulting values in a list and repeats the list for all rows in the group. """ ) return @app.cell def _(df, pl): df.with_columns( cumulative_revenue=pl.col("revenue").cum_sum().over("channel", mapping_strategy="join") ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ### Explode The "explode" mapping strategy is similar to "group_to_rows", but is typically faster and does not preserve the order of rows. Due to this, it requires sorting columns (including those not in the window function) for the result to make sense. It should also only be used in a `select` context and not `with_columns`. The result of "explode" is similar to a `group_by` followed by an `agg` followed by an `explode`. """ ) return @app.cell def _(df, pl): df.select( pl.all().over("channel", order_by="date", mapping_strategy="explode"), cumulative_revenue=pl.col("revenue") .cum_sum() .over("channel", order_by="date", mapping_strategy="explode"), ) return @app.cell(hide_code=True) def _(mo): mo.md(r"""Note the modified order of the rows in the output, (but data is the same)...""") return @app.cell(hide_code=True) def _(mo): mo.md(r"""## Other tips and tricks""") return @app.cell(hide_code=True) def _(mo): mo.md( r""" ### Reusing a window In SQL there is a `WINDOW` keyword, which easily allows the re-use of the same window specification across expressions without needing to repeat it. In Polars, this can be achieved by using `dict` unpacking to pass arguments to `over`. """ ) return @app.cell def _(df_sorted, pl): window = { "partition_by": "date", "order_by": "date", "mapping_strategy": "group_to_rows", } df_sorted.with_columns( pct_daily_revenue=(pl.col("revenue") / pl.col("revenue").sum()).over(**window), highest_revenue_channel=pl.col("channel").top_k_by("revenue", k=1).first().over(**window), daily_revenue_rank=pl.col("revenue").rank().over(**window), ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ### Rolling Windows Much like in SQL, Polars also gives you the ability to do rolling window computations. In Polars, the rolling calculation is also aware of temporal data, making it easy to express if the data is not contiguous (i.e., observations are missing). Let's look at an example of that now by filtering out one day of our data and then calculating both a 3-day and 3-row max revenue split by channel... """ ) return @app.cell def _(date, df, pl): ( df.filter(pl.col("date") != date(2025, 2, 2)) .with_columns( # "3d" -> 3 days rev_3_day_max=pl.col("revenue").rolling_max_by("date", "3d", min_samples=1).over("channel"), rev_3_row_max=pl.col("revenue").rolling_max(3, min_samples=1).over("channel"), ) # sort to make the output a little easier to analyze .sort("channel", "date") ) return @app.cell(hide_code=True) def _(mo): mo.md(r"""Notice the difference in the 2nd last row...""") return @app.cell(hide_code=True) def _(mo): mo.md(r"""We hope you enjoyed this notebook, demonstrating window functions in Polars!""") return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## Additional References - [Polars User guide - Window functions](https://docs.pola.rs/user-guide/expressions/window-functions/) - [Polars over method API reference](https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.over.html) - [PostgreSQL window function documentation](https://www.postgresql.org/docs/current/tutorial-window.html) """ ) return @app.cell(hide_code=True) def _(): import marimo as mo return (mo,) if __name__ == "__main__": app.run()