Spaces:
Running
Running
Refactor plotting functions for clarity and modularity.
Browse files- probability/15_poisson_distribution.py +258 -222
probability/15_poisson_distribution.py
CHANGED
|
@@ -13,7 +13,7 @@
|
|
| 13 |
|
| 14 |
import marimo
|
| 15 |
|
| 16 |
-
__generated_with = "0.11.
|
| 17 |
app = marimo.App(width="medium", app_title="Poisson Distribution")
|
| 18 |
|
| 19 |
|
|
@@ -93,7 +93,7 @@ def _(mo):
|
|
| 93 |
|
| 94 |
@app.cell(hide_code=True)
|
| 95 |
def _(TangleSlider, mo):
|
| 96 |
-
#
|
| 97 |
lambda_slider = mo.ui.anywidget(TangleSlider(
|
| 98 |
amount=5,
|
| 99 |
min_value=0.1,
|
|
@@ -118,56 +118,60 @@ def _(TangleSlider, mo):
|
|
| 118 |
|
| 119 |
@app.cell(hide_code=True)
|
| 120 |
def _(lambda_slider, np, plt, stats):
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
_variance = _lambda # For Poisson, variance = lambda
|
| 131 |
-
_std_dev = np.sqrt(_variance)
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
|
|
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
arrowprops=dict(facecolor='black', shrink=0.05, width=1))
|
| 159 |
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
xytext=(_mean + 1, max(_pmf) * 0.6),
|
| 163 |
-
arrowprops=dict(facecolor='black', shrink=0.05, width=1))
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
| 167 |
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
|
|
|
| 171 |
|
| 172 |
|
| 173 |
@app.cell(hide_code=True)
|
|
@@ -190,39 +194,44 @@ def _(mo):
|
|
| 190 |
|
| 191 |
@app.cell(hide_code=True)
|
| 192 |
def _(fig_to_image, mo, plt):
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
_img = mo.image(fig_to_image(_fig), width="100%")
|
| 221 |
|
| 222 |
# explanation
|
| 223 |
_explanation = mo.md(
|
| 224 |
r"""
|
| 225 |
In this visualization:
|
|
|
|
| 226 |
- Each rectangle represents a 1-second interval
|
| 227 |
- Blue rectangles indicate intervals where an event occurred
|
| 228 |
- Red dots show the actual event times (2.75s and 7.12s)
|
|
@@ -230,7 +239,8 @@ def _(fig_to_image, mo, plt):
|
|
| 230 |
If we treat this as a binomial experiment with 60 trials (seconds), we can calculate probabilities using the binomial PMF. But there's a problem: what if multiple events occur within the same second? To address this, we can divide our minute into smaller intervals.
|
| 231 |
"""
|
| 232 |
)
|
| 233 |
-
|
|
|
|
| 234 |
|
| 235 |
|
| 236 |
@app.cell(hide_code=True)
|
|
@@ -266,39 +276,41 @@ def _(mo):
|
|
| 266 |
|
| 267 |
|
| 268 |
@app.cell(hide_code=True)
|
| 269 |
-
def _(
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
|
|
|
|
|
|
| 299 |
_img = mo.image(fig_to_image(_fig), width="100%")
|
| 300 |
|
| 301 |
-
#
|
| 302 |
_explanation = mo.md(
|
| 303 |
r"""
|
| 304 |
With $n=600$ and $p=\frac{5}{600}=\frac{1}{120}$, we can recalculate our probabilities:
|
|
@@ -312,7 +324,8 @@ def _(e, fig_to_image, mo, plt):
|
|
| 312 |
As we make our intervals smaller (increasing $n$), our approximation becomes more accurate.
|
| 313 |
"""
|
| 314 |
)
|
| 315 |
-
|
|
|
|
| 316 |
|
| 317 |
|
| 318 |
@app.cell(hide_code=True)
|
|
@@ -329,7 +342,6 @@ def _(mo):
|
|
| 329 |
|
| 330 |
@app.cell(hide_code=True)
|
| 331 |
def _(mo):
|
| 332 |
-
# slider for number of intervals
|
| 333 |
intervals_slider = mo.ui.slider(
|
| 334 |
start = 60,
|
| 335 |
stop = 10000,
|
|
@@ -347,47 +359,54 @@ def _(intervals_slider):
|
|
| 347 |
|
| 348 |
@app.cell(hide_code=True)
|
| 349 |
def _(intervals_slider, np, pd, plt, stats):
|
| 350 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
n = intervals_slider.value
|
| 352 |
_lambda = 5 # Fixed lambda for our example
|
| 353 |
-
p = _lambda / n
|
| 354 |
-
|
| 355 |
-
# Calculate the binomial probabilities
|
| 356 |
-
_x_values = np.arange(0, 15)
|
| 357 |
-
_binom_pmf = stats.binom.pmf(_x_values, n, p)
|
| 358 |
-
|
| 359 |
-
# Calculate the true Poisson probabilities
|
| 360 |
-
_poisson_pmf = stats.poisson.pmf(_x_values, _lambda)
|
| 361 |
-
|
| 362 |
-
# Create a DataFrame for comparison
|
| 363 |
-
df = pd.DataFrame({
|
| 364 |
-
'Events': _x_values,
|
| 365 |
-
f'Binomial(n={n}, p={p:.6f})': _binom_pmf,
|
| 366 |
-
f'Poisson(λ=5)': _poisson_pmf,
|
| 367 |
-
'Difference': np.abs(_binom_pmf - _poisson_pmf)
|
| 368 |
-
})
|
| 369 |
-
|
| 370 |
-
# Plot both PMFs
|
| 371 |
-
fig, _ax = plt.subplots(figsize=(10, 6))
|
| 372 |
-
|
| 373 |
-
# Bar plot for the binomial
|
| 374 |
-
_ax.bar(_x_values - 0.2, _binom_pmf, width=0.4, alpha=0.7,
|
| 375 |
-
color='royalblue', label=f'Binomial(n={n}, p={p:.6f})')
|
| 376 |
-
|
| 377 |
-
# Bar plot for the Poisson
|
| 378 |
-
_ax.bar(_x_values + 0.2, _poisson_pmf, width=0.4, alpha=0.7,
|
| 379 |
-
color='crimson', label='Poisson(λ=5)')
|
| 380 |
-
|
| 381 |
-
# Add labels and title
|
| 382 |
-
_ax.set_xlabel('Number of Events (k)')
|
| 383 |
-
_ax.set_ylabel('Probability')
|
| 384 |
-
_ax.set_title(f'Comparison of Binomial and Poisson PMFs with n={n}')
|
| 385 |
-
_ax.legend()
|
| 386 |
-
_ax.set_xticks(_x_values)
|
| 387 |
-
_ax.grid(alpha=0.3)
|
| 388 |
|
| 389 |
-
|
| 390 |
-
|
|
|
|
| 391 |
|
| 392 |
|
| 393 |
@app.cell(hide_code=True)
|
|
@@ -399,7 +418,7 @@ def _(df, fig, fig_to_image, mo, n, p):
|
|
| 399 |
'Difference': '{:.6f}'
|
| 400 |
})
|
| 401 |
|
| 402 |
-
# Calculate the
|
| 403 |
_max_diff = df['Difference'].max()
|
| 404 |
|
| 405 |
# output
|
|
@@ -498,7 +517,6 @@ def _(mo):
|
|
| 498 |
|
| 499 |
@app.cell
|
| 500 |
def _(stats):
|
| 501 |
-
# Set lambda parameter
|
| 502 |
_lambda = 5
|
| 503 |
|
| 504 |
# Calculate probabilities for X = 1, 2, 3
|
|
@@ -528,42 +546,46 @@ def _(mo):
|
|
| 528 |
|
| 529 |
@app.cell(hide_code=True)
|
| 530 |
def _(np, plt, stats):
|
| 531 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 532 |
_lambda = 5
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
# theoretical PMF
|
| 536 |
-
_x_values = np.arange(0, max(_samples) + 1)
|
| 537 |
-
_pmf_values = stats.poisson.pmf(_x_values, _lambda)
|
| 538 |
-
|
| 539 |
-
# histograms to compare
|
| 540 |
-
_fig, _ax = plt.subplots(figsize=(10, 6))
|
| 541 |
-
|
| 542 |
-
# samples as a histogram
|
| 543 |
-
_ax.hist(_samples, bins=np.arange(-0.5, max(_samples) + 1.5, 1),
|
| 544 |
-
alpha=0.7, density=True, label='Random Samples')
|
| 545 |
-
|
| 546 |
-
# theoretical PMF
|
| 547 |
-
_ax.plot(_x_values, _pmf_values, 'ro-', label='Theoretical PMF')
|
| 548 |
-
|
| 549 |
-
# labels and title
|
| 550 |
-
_ax.set_xlabel('Number of Events')
|
| 551 |
-
_ax.set_ylabel('Relative Frequency / Probability')
|
| 552 |
-
_ax.set_title(f'1000 Random Samples from Poisson(λ={_lambda})')
|
| 553 |
-
_ax.legend()
|
| 554 |
-
_ax.grid(alpha=0.3)
|
| 555 |
-
|
| 556 |
-
# annotations
|
| 557 |
-
_ax.annotate(f'Sample Mean: {np.mean(_samples):.2f}',
|
| 558 |
-
xy=(0.7, 0.9), xycoords='axes fraction',
|
| 559 |
-
bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.3))
|
| 560 |
-
_ax.annotate(f'Theoretical Mean: {_lambda:.2f}',
|
| 561 |
-
xy=(0.7, 0.8), xycoords='axes fraction',
|
| 562 |
-
bbox=dict(boxstyle='round,pad=0.5', fc='lightgreen', alpha=0.3))
|
| 563 |
-
|
| 564 |
-
plt.tight_layout()
|
| 565 |
-
plt.gca()
|
| 566 |
-
return
|
| 567 |
|
| 568 |
|
| 569 |
@app.cell(hide_code=True)
|
|
@@ -584,7 +606,6 @@ def _(mo):
|
|
| 584 |
|
| 585 |
@app.cell(hide_code=True)
|
| 586 |
def _(mo):
|
| 587 |
-
# sliders for the rate and time period
|
| 588 |
rate_slider = mo.ui.slider(
|
| 589 |
start = 0.1,
|
| 590 |
stop = 10,
|
|
@@ -608,59 +629,74 @@ def _(mo):
|
|
| 608 |
return controls, rate_slider, time_slider
|
| 609 |
|
| 610 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 611 |
@app.cell(hide_code=True)
|
| 612 |
def _(mo, np, plt, rate_slider, stats, time_slider):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 613 |
# parameters from sliders
|
| 614 |
_rate = rate_slider.value
|
| 615 |
_time = time_slider.value
|
| 616 |
|
| 617 |
-
#
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
# PMF for values
|
| 621 |
-
_max_x = max(30, int(_lambda * 1.5))
|
| 622 |
-
_x = np.arange(0, _max_x + 1)
|
| 623 |
-
_pmf = stats.poisson.pmf(_x, _lambda)
|
| 624 |
|
| 625 |
-
#
|
| 626 |
-
|
| 627 |
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
label=f'PMF: Poisson(λ={_lambda:.1f})')
|
| 631 |
-
|
| 632 |
-
# vertical line for mean
|
| 633 |
-
_ax.axvline(x=_lambda, color='red', linestyle='--', linewidth=2,
|
| 634 |
-
label=f'Mean = {_lambda:.1f}')
|
| 635 |
-
|
| 636 |
-
# labels and title
|
| 637 |
-
_ax.set_xlabel('Number of Events')
|
| 638 |
-
_ax.set_ylabel('Probability')
|
| 639 |
-
_ax.set_title(f'Poisson Distribution Over {_time} Units (Rate = {_rate}/unit)')
|
| 640 |
-
|
| 641 |
-
# better visualization if lambda is large
|
| 642 |
-
if _lambda > 10:
|
| 643 |
-
_ax.set_xlim(_lambda - 4*np.sqrt(_lambda), _lambda + 4*np.sqrt(_lambda))
|
| 644 |
-
|
| 645 |
-
_ax.legend()
|
| 646 |
-
_ax.grid(alpha=0.3)
|
| 647 |
-
|
| 648 |
-
plt.tight_layout()
|
| 649 |
-
plt.gca()
|
| 650 |
-
|
| 651 |
-
# additional information
|
| 652 |
-
info = mo.md(
|
| 653 |
-
f"""
|
| 654 |
-
When the rate is **{_rate}** events per unit time and we observe for **{_time}** units:
|
| 655 |
-
|
| 656 |
-
- The expected number of events is **{_lambda:.1f}**
|
| 657 |
-
- The variance is also **{_lambda:.1f}**
|
| 658 |
-
- The standard deviation is **{np.sqrt(_lambda):.2f}**
|
| 659 |
-
- P(X=0) = {stats.poisson.pmf(0, _lambda):.4f} (probability of no events)
|
| 660 |
-
- P(X≥10) = {1 - stats.poisson.cdf(9, _lambda):.4f} (probability of 10 or more events)
|
| 661 |
-
"""
|
| 662 |
-
)
|
| 663 |
-
return (info,)
|
| 664 |
|
| 665 |
|
| 666 |
@app.cell(hide_code=True)
|
|
|
|
| 13 |
|
| 14 |
import marimo
|
| 15 |
|
| 16 |
+
__generated_with = "0.11.25"
|
| 17 |
app = marimo.App(width="medium", app_title="Poisson Distribution")
|
| 18 |
|
| 19 |
|
|
|
|
| 93 |
|
| 94 |
@app.cell(hide_code=True)
|
| 95 |
def _(TangleSlider, mo):
|
| 96 |
+
# interactive elements using TangleSlider
|
| 97 |
lambda_slider = mo.ui.anywidget(TangleSlider(
|
| 98 |
amount=5,
|
| 99 |
min_value=0.1,
|
|
|
|
| 118 |
|
| 119 |
@app.cell(hide_code=True)
|
| 120 |
def _(lambda_slider, np, plt, stats):
|
| 121 |
+
def create_poisson_pmf_plot(lambda_value):
|
| 122 |
+
"""Create a visualization of Poisson PMF with annotations for mean and variance."""
|
| 123 |
+
# PMF for values
|
| 124 |
+
max_x = max(20, int(lambda_value * 3)) # Show at least up to 3*lambda
|
| 125 |
+
x = np.arange(0, max_x + 1)
|
| 126 |
+
pmf = stats.poisson.pmf(x, lambda_value)
|
| 127 |
|
| 128 |
+
# Relevant key statistics
|
| 129 |
+
mean = lambda_value # For Poisson, mean = lambda
|
| 130 |
+
variance = lambda_value # For Poisson, variance = lambda
|
| 131 |
+
std_dev = np.sqrt(variance)
|
| 132 |
|
| 133 |
+
# plot
|
| 134 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
|
|
|
|
|
|
| 135 |
|
| 136 |
+
# PMF as bars
|
| 137 |
+
ax.bar(x, pmf, color='royalblue', alpha=0.7, label=f'PMF: P(X=k)')
|
| 138 |
|
| 139 |
+
# for the PMF values
|
| 140 |
+
ax.plot(x, pmf, 'ro-', alpha=0.6, label='PMF line')
|
| 141 |
|
| 142 |
+
# Vertical lines - mean and key values
|
| 143 |
+
ax.axvline(x=mean, color='green', linestyle='--', linewidth=2,
|
| 144 |
+
label=f'Mean: {mean:.2f}')
|
| 145 |
|
| 146 |
+
# Stdev region
|
| 147 |
+
ax.axvspan(mean - std_dev, mean + std_dev, alpha=0.2, color='green',
|
| 148 |
+
label=f'±1 Std Dev: {std_dev:.2f}')
|
| 149 |
|
| 150 |
+
ax.set_xlabel('Number of Events (k)')
|
| 151 |
+
ax.set_ylabel('Probability: P(X=k)')
|
| 152 |
+
ax.set_title(f'Poisson Distribution with λ={lambda_value:.1f}')
|
| 153 |
|
| 154 |
+
# annotations
|
| 155 |
+
ax.annotate(f'E[X] = {mean:.2f}',
|
| 156 |
+
xy=(mean, stats.poisson.pmf(int(mean), lambda_value)),
|
| 157 |
+
xytext=(mean + 1, max(pmf) * 0.8),
|
| 158 |
+
arrowprops=dict(facecolor='black', shrink=0.05, width=1))
|
| 159 |
|
| 160 |
+
ax.annotate(f'Var(X) = {variance:.2f}',
|
| 161 |
+
xy=(mean, stats.poisson.pmf(int(mean), lambda_value) / 2),
|
| 162 |
+
xytext=(mean + 1, max(pmf) * 0.6),
|
| 163 |
+
arrowprops=dict(facecolor='black', shrink=0.05, width=1))
|
|
|
|
| 164 |
|
| 165 |
+
ax.grid(alpha=0.3)
|
| 166 |
+
ax.legend()
|
|
|
|
|
|
|
| 167 |
|
| 168 |
+
plt.tight_layout()
|
| 169 |
+
return plt.gca()
|
| 170 |
|
| 171 |
+
# Get parameter from slider and create plot
|
| 172 |
+
_lambda = lambda_slider.amount
|
| 173 |
+
create_poisson_pmf_plot(_lambda)
|
| 174 |
+
return (create_poisson_pmf_plot,)
|
| 175 |
|
| 176 |
|
| 177 |
@app.cell(hide_code=True)
|
|
|
|
| 194 |
|
| 195 |
@app.cell(hide_code=True)
|
| 196 |
def _(fig_to_image, mo, plt):
|
| 197 |
+
def create_time_division_visualization():
|
| 198 |
+
# vizualization of dividing a minute into 60 seconds
|
| 199 |
+
fig, ax = plt.subplots(figsize=(12, 2))
|
| 200 |
+
|
| 201 |
+
# Example events harcoded at 2.75s and 7.12s
|
| 202 |
+
events = [2.75, 7.12]
|
| 203 |
+
|
| 204 |
+
# array of 60 rectangles
|
| 205 |
+
for i in range(60):
|
| 206 |
+
color = 'royalblue' if any(i <= e < i+1 for e in events) else 'lightgray'
|
| 207 |
+
ax.add_patch(plt.Rectangle((i, 0), 0.9, 1, color=color))
|
| 208 |
+
|
| 209 |
+
# markers for events
|
| 210 |
+
for e in events:
|
| 211 |
+
ax.plot(e, 0.5, 'ro', markersize=10)
|
| 212 |
+
|
| 213 |
+
# labels
|
| 214 |
+
ax.set_xlim(0, 60)
|
| 215 |
+
ax.set_ylim(0, 1)
|
| 216 |
+
ax.set_yticks([])
|
| 217 |
+
ax.set_xticks([0, 15, 30, 45, 60])
|
| 218 |
+
ax.set_xticklabels(['0s', '15s', '30s', '45s', '60s'])
|
| 219 |
+
ax.set_xlabel('Time (seconds)')
|
| 220 |
+
ax.set_title('One Minute Divided into 60 Second Intervals')
|
| 221 |
+
|
| 222 |
+
plt.tight_layout()
|
| 223 |
+
plt.gca()
|
| 224 |
+
return fig, events, i
|
| 225 |
+
|
| 226 |
+
# Create visualization and convert to image
|
| 227 |
+
_fig, _events, i = create_time_division_visualization()
|
| 228 |
_img = mo.image(fig_to_image(_fig), width="100%")
|
| 229 |
|
| 230 |
# explanation
|
| 231 |
_explanation = mo.md(
|
| 232 |
r"""
|
| 233 |
In this visualization:
|
| 234 |
+
|
| 235 |
- Each rectangle represents a 1-second interval
|
| 236 |
- Blue rectangles indicate intervals where an event occurred
|
| 237 |
- Red dots show the actual event times (2.75s and 7.12s)
|
|
|
|
| 239 |
If we treat this as a binomial experiment with 60 trials (seconds), we can calculate probabilities using the binomial PMF. But there's a problem: what if multiple events occur within the same second? To address this, we can divide our minute into smaller intervals.
|
| 240 |
"""
|
| 241 |
)
|
| 242 |
+
mo.vstack([_fig, _explanation])
|
| 243 |
+
return create_time_division_visualization, i
|
| 244 |
|
| 245 |
|
| 246 |
@app.cell(hide_code=True)
|
|
|
|
| 276 |
|
| 277 |
|
| 278 |
@app.cell(hide_code=True)
|
| 279 |
+
def _(fig_to_image, mo, plt):
|
| 280 |
+
def create_decisecond_visualization(e_value):
|
| 281 |
+
# (Just showing the first 100 for clarity)
|
| 282 |
+
fig, ax = plt.subplots(figsize=(12, 2))
|
| 283 |
+
|
| 284 |
+
# Example events at 2.75s and 7.12s (convert to deciseconds)
|
| 285 |
+
events = [27.5, 71.2]
|
| 286 |
+
|
| 287 |
+
for i in range(100):
|
| 288 |
+
color = 'royalblue' if any(i <= event_val < i + 1 for event_val in events) else 'lightgray'
|
| 289 |
+
ax.add_patch(plt.Rectangle((i, 0), 0.9, 1, color=color))
|
| 290 |
+
|
| 291 |
+
# Markers for events
|
| 292 |
+
for event in events:
|
| 293 |
+
if event < 100: # Only show events in our visible range
|
| 294 |
+
ax.plot(event/10, 0.5, 'ro', markersize=10) # Divide by 10 to convert to deciseconds
|
| 295 |
+
|
| 296 |
+
# Add labels
|
| 297 |
+
ax.set_xlim(0, 100)
|
| 298 |
+
ax.set_ylim(0, 1)
|
| 299 |
+
ax.set_yticks([])
|
| 300 |
+
ax.set_xticks([0, 20, 40, 60, 80, 100])
|
| 301 |
+
ax.set_xticklabels(['0s', '2s', '4s', '6s', '8s', '10s'])
|
| 302 |
+
ax.set_xlabel('Time (first 10 seconds shown)')
|
| 303 |
+
ax.set_title('One Minute Divided into 600 Decisecond Intervals (first 100 shown)')
|
| 304 |
+
|
| 305 |
+
plt.tight_layout()
|
| 306 |
+
plt.gca()
|
| 307 |
+
return fig
|
| 308 |
+
|
| 309 |
+
# Create viz and convert to image
|
| 310 |
+
_fig = create_decisecond_visualization(e_value=5)
|
| 311 |
_img = mo.image(fig_to_image(_fig), width="100%")
|
| 312 |
|
| 313 |
+
# Explanation
|
| 314 |
_explanation = mo.md(
|
| 315 |
r"""
|
| 316 |
With $n=600$ and $p=\frac{5}{600}=\frac{1}{120}$, we can recalculate our probabilities:
|
|
|
|
| 324 |
As we make our intervals smaller (increasing $n$), our approximation becomes more accurate.
|
| 325 |
"""
|
| 326 |
)
|
| 327 |
+
mo.vstack([_fig, _explanation])
|
| 328 |
+
return (create_decisecond_visualization,)
|
| 329 |
|
| 330 |
|
| 331 |
@app.cell(hide_code=True)
|
|
|
|
| 342 |
|
| 343 |
@app.cell(hide_code=True)
|
| 344 |
def _(mo):
|
|
|
|
| 345 |
intervals_slider = mo.ui.slider(
|
| 346 |
start = 60,
|
| 347 |
stop = 10000,
|
|
|
|
| 359 |
|
| 360 |
@app.cell(hide_code=True)
|
| 361 |
def _(intervals_slider, np, pd, plt, stats):
|
| 362 |
+
def create_comparison_plot(n, lambda_value):
|
| 363 |
+
# Calculate probability
|
| 364 |
+
p = lambda_value / n
|
| 365 |
+
|
| 366 |
+
# Binomial probabilities
|
| 367 |
+
x_values = np.arange(0, 15)
|
| 368 |
+
binom_pmf = stats.binom.pmf(x_values, n, p)
|
| 369 |
+
|
| 370 |
+
# True Poisson probabilities
|
| 371 |
+
poisson_pmf = stats.poisson.pmf(x_values, lambda_value)
|
| 372 |
+
|
| 373 |
+
# DF for comparison
|
| 374 |
+
df = pd.DataFrame({
|
| 375 |
+
'Events': x_values,
|
| 376 |
+
f'Binomial(n={n}, p={p:.6f})': binom_pmf,
|
| 377 |
+
f'Poisson(λ=5)': poisson_pmf,
|
| 378 |
+
'Difference': np.abs(binom_pmf - poisson_pmf)
|
| 379 |
+
})
|
| 380 |
+
|
| 381 |
+
# Plot both PMFs
|
| 382 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 383 |
+
|
| 384 |
+
# Bar plot for the binomial
|
| 385 |
+
ax.bar(x_values - 0.2, binom_pmf, width=0.4, alpha=0.7,
|
| 386 |
+
color='royalblue', label=f'Binomial(n={n}, p={p:.6f})')
|
| 387 |
+
|
| 388 |
+
# Bar plot for the Poisson
|
| 389 |
+
ax.bar(x_values + 0.2, poisson_pmf, width=0.4, alpha=0.7,
|
| 390 |
+
color='crimson', label='Poisson(λ=5)')
|
| 391 |
+
|
| 392 |
+
# Labels and title
|
| 393 |
+
ax.set_xlabel('Number of Events (k)')
|
| 394 |
+
ax.set_ylabel('Probability')
|
| 395 |
+
ax.set_title(f'Comparison of Binomial and Poisson PMFs with n={n}')
|
| 396 |
+
ax.legend()
|
| 397 |
+
ax.set_xticks(x_values)
|
| 398 |
+
ax.grid(alpha=0.3)
|
| 399 |
+
|
| 400 |
+
plt.tight_layout()
|
| 401 |
+
return df, fig, n, p
|
| 402 |
+
|
| 403 |
+
# Number of intervals from the slider
|
| 404 |
n = intervals_slider.value
|
| 405 |
_lambda = 5 # Fixed lambda for our example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
|
| 407 |
+
# Cromparison plot
|
| 408 |
+
df, fig, n, p = create_comparison_plot(n, _lambda)
|
| 409 |
+
return create_comparison_plot, df, fig, n, p
|
| 410 |
|
| 411 |
|
| 412 |
@app.cell(hide_code=True)
|
|
|
|
| 418 |
'Difference': '{:.6f}'
|
| 419 |
})
|
| 420 |
|
| 421 |
+
# Calculate the max absolute difference
|
| 422 |
_max_diff = df['Difference'].max()
|
| 423 |
|
| 424 |
# output
|
|
|
|
| 517 |
|
| 518 |
@app.cell
|
| 519 |
def _(stats):
|
|
|
|
| 520 |
_lambda = 5
|
| 521 |
|
| 522 |
# Calculate probabilities for X = 1, 2, 3
|
|
|
|
| 546 |
|
| 547 |
@app.cell(hide_code=True)
|
| 548 |
def _(np, plt, stats):
|
| 549 |
+
def create_samples_plot(lambda_value, sample_size=1000):
|
| 550 |
+
# Random samples
|
| 551 |
+
samples = stats.poisson.rvs(lambda_value, size=sample_size)
|
| 552 |
+
|
| 553 |
+
# theoretical PMF
|
| 554 |
+
x_values = np.arange(0, max(samples) + 1)
|
| 555 |
+
pmf_values = stats.poisson.pmf(x_values, lambda_value)
|
| 556 |
+
|
| 557 |
+
# histograms to compare
|
| 558 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 559 |
+
|
| 560 |
+
# samples as a histogram
|
| 561 |
+
ax.hist(samples, bins=np.arange(-0.5, max(samples) + 1.5, 1),
|
| 562 |
+
alpha=0.7, density=True, label='Random Samples')
|
| 563 |
+
|
| 564 |
+
# theoretical PMF
|
| 565 |
+
ax.plot(x_values, pmf_values, 'ro-', label='Theoretical PMF')
|
| 566 |
+
|
| 567 |
+
# labels and title
|
| 568 |
+
ax.set_xlabel('Number of Events')
|
| 569 |
+
ax.set_ylabel('Relative Frequency / Probability')
|
| 570 |
+
ax.set_title(f'1000 Random Samples from Poisson(λ={lambda_value})')
|
| 571 |
+
ax.legend()
|
| 572 |
+
ax.grid(alpha=0.3)
|
| 573 |
+
|
| 574 |
+
# annotations
|
| 575 |
+
ax.annotate(f'Sample Mean: {np.mean(samples):.2f}',
|
| 576 |
+
xy=(0.7, 0.9), xycoords='axes fraction',
|
| 577 |
+
bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.3))
|
| 578 |
+
ax.annotate(f'Theoretical Mean: {lambda_value:.2f}',
|
| 579 |
+
xy=(0.7, 0.8), xycoords='axes fraction',
|
| 580 |
+
bbox=dict(boxstyle='round,pad=0.5', fc='lightgreen', alpha=0.3))
|
| 581 |
+
|
| 582 |
+
plt.tight_layout()
|
| 583 |
+
return plt.gca()
|
| 584 |
+
|
| 585 |
+
# Use a lambda value of 5 for this example
|
| 586 |
_lambda = 5
|
| 587 |
+
create_samples_plot(_lambda)
|
| 588 |
+
return (create_samples_plot,)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 589 |
|
| 590 |
|
| 591 |
@app.cell(hide_code=True)
|
|
|
|
| 606 |
|
| 607 |
@app.cell(hide_code=True)
|
| 608 |
def _(mo):
|
|
|
|
| 609 |
rate_slider = mo.ui.slider(
|
| 610 |
start = 0.1,
|
| 611 |
stop = 10,
|
|
|
|
| 629 |
return controls, rate_slider, time_slider
|
| 630 |
|
| 631 |
|
| 632 |
+
@app.cell
|
| 633 |
+
def _(controls):
|
| 634 |
+
controls.center()
|
| 635 |
+
return
|
| 636 |
+
|
| 637 |
+
|
| 638 |
@app.cell(hide_code=True)
|
| 639 |
def _(mo, np, plt, rate_slider, stats, time_slider):
|
| 640 |
+
def create_time_scaling_plot(rate, time_period):
|
| 641 |
+
# scaled rate parameter
|
| 642 |
+
lambda_value = rate * time_period
|
| 643 |
+
|
| 644 |
+
# PMF for values
|
| 645 |
+
max_x = max(30, int(lambda_value * 1.5))
|
| 646 |
+
x = np.arange(0, max_x + 1)
|
| 647 |
+
pmf = stats.poisson.pmf(x, lambda_value)
|
| 648 |
+
|
| 649 |
+
# plot
|
| 650 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 651 |
+
|
| 652 |
+
# PMF as bars
|
| 653 |
+
ax.bar(x, pmf, color='royalblue', alpha=0.7,
|
| 654 |
+
label=f'PMF: Poisson(λ={lambda_value:.1f})')
|
| 655 |
+
|
| 656 |
+
# vertical line for mean
|
| 657 |
+
ax.axvline(x=lambda_value, color='red', linestyle='--', linewidth=2,
|
| 658 |
+
label=f'Mean = {lambda_value:.1f}')
|
| 659 |
+
|
| 660 |
+
# labels and title
|
| 661 |
+
ax.set_xlabel('Number of Events')
|
| 662 |
+
ax.set_ylabel('Probability')
|
| 663 |
+
ax.set_title(f'Poisson Distribution Over {time_period} Units (Rate = {rate}/unit)')
|
| 664 |
+
|
| 665 |
+
# better visualization if lambda is large
|
| 666 |
+
if lambda_value > 10:
|
| 667 |
+
ax.set_xlim(lambda_value - 4*np.sqrt(lambda_value),
|
| 668 |
+
lambda_value + 4*np.sqrt(lambda_value))
|
| 669 |
+
|
| 670 |
+
ax.legend()
|
| 671 |
+
ax.grid(alpha=0.3)
|
| 672 |
+
|
| 673 |
+
plt.tight_layout()
|
| 674 |
+
|
| 675 |
+
# Create relevant info markdown
|
| 676 |
+
info_text = f"""
|
| 677 |
+
When the rate is **{rate}** events per unit time and we observe for **{time_period}** units:
|
| 678 |
+
|
| 679 |
+
- The expected number of events is **{lambda_value:.1f}**
|
| 680 |
+
- The variance is also **{lambda_value:.1f}**
|
| 681 |
+
- The standard deviation is **{np.sqrt(lambda_value):.2f}**
|
| 682 |
+
- P(X=0) = {stats.poisson.pmf(0, lambda_value):.4f} (probability of no events)
|
| 683 |
+
- P(X≥10) = {1 - stats.poisson.cdf(9, lambda_value):.4f} (probability of 10 or more events)
|
| 684 |
+
"""
|
| 685 |
+
|
| 686 |
+
return plt.gca(), info_text
|
| 687 |
+
|
| 688 |
# parameters from sliders
|
| 689 |
_rate = rate_slider.value
|
| 690 |
_time = time_slider.value
|
| 691 |
|
| 692 |
+
# store
|
| 693 |
+
_plot, _info_text = create_time_scaling_plot(_rate, _time)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 694 |
|
| 695 |
+
# Display info as markdown
|
| 696 |
+
info = mo.md(_info_text)
|
| 697 |
|
| 698 |
+
mo.vstack([_plot, info], justify="center")
|
| 699 |
+
return create_time_scaling_plot, info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 700 |
|
| 701 |
|
| 702 |
@app.cell(hide_code=True)
|