Spaces:
Running
Running
File size: 9,832 Bytes
ef43da6 5d24bcb ef43da6 5d24bcb ef43da6 5d24bcb ef43da6 5d24bcb ef43da6 5d24bcb ef43da6 5d24bcb ef43da6 5d24bcb ef43da6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
# /// script
# requires-python = ">=3.11"
# dependencies = [
# "marimo",
# "duckdb==1.2.1",
# "pyarrow==19.0.1",
# "polars[pyarrow]==1.25.2",
# "pandas==2.2.3",
# ]
# ///
import marimo
__generated_with = "0.14.10"
app = marimo.App(width="medium")
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Working with Apache Arrow
*By [Thomas Liang](https://github.com/thliang01)*
#
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
[Apache Arrow](https://arrow.apache.org/) is a multi-language toolbox for building high performance applications that process and transport large data sets. It is designed to both improve the performance of analytical algorithms and the efficiency of moving data from one system or programming language to another.
A critical component of Apache Arrow is its in-memory columnar format, a standardized, language-agnostic specification for representing structured, table-like datasets in-memory. This data format has a rich data type system (included nested and user-defined data types) designed to support the needs of analytic database systems, data frame libraries, and more.
DuckDB has native support for Apache Arrow, which is an in-memory columnar data format. This allows for efficient data transfer between DuckDB and other Arrow-compatible systems, such as Polars and Pandas (via PyArrow).
In this notebook, we'll explore how to:
- Create an Arrow table from a DuckDB query.
- Load an Arrow table into DuckDB.
- Convert between DuckDB, Arrow, and Polars/Pandas DataFrames.
- Combining data from multiple sources
- Performance benefits
"""
)
return
@app.cell
def _(mo):
mo.sql(
"""
CREATE TABLE IF NOT EXISTS users (
id INTEGER,
name VARCHAR,
age INTEGER,
city VARCHAR
);
INSERT INTO users VALUES
(1, 'Alice', 30, 'New York'),
(2, 'Bob', 24, 'London'),
(3, 'Charlie', 35, 'Paris'),
(4, 'David', 29, 'New York'),
(5, 'Eve', 40, 'London');
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## 1. Creating an Arrow Table from a DuckDB Query
You can directly fetch the results of a DuckDB query as an Apache Arrow table using the `.arrow()` method on the query result.
"""
)
return
@app.cell
def _(mo):
users_arrow_table = mo.sql( # type: ignore
"""
SELECT * FROM users WHERE age > 30;
"""
).to_arrow()
return (users_arrow_table,)
@app.cell
def _(users_arrow_table):
users_arrow_table
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"The `.arrow()` method returns a `pyarrow.Table` object. We can inspect its schema:")
return
@app.cell
def _(users_arrow_table):
users_arrow_table.schema
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## 2. Loading an Arrow Table into DuckDB
You can also register an existing Arrow table (or a Polars/Pandas DataFrame, which uses Arrow under the hood) directly with DuckDB. This allows you to query the in-memory data without any copying, which is highly efficient.
"""
)
return
@app.cell
def _(pa):
# Create an Arrow table in Python
new_data = pa.table({
'id': [6, 7],
'name': ['Fiona', 'George'],
'age': [22, 45],
'city': ['Berlin', 'Tokyo']
})
return (new_data,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
Now, we can query this Arrow table `new_data` directly from SQL by embedding it in the query.
"""
)
return
@app.cell
def _(mo, new_data):
mo.sql(
f"""
SELECT name, age, city
FROM new_data
WHERE age > 30;
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## 3. Convert between DuckDB, Arrow, and Polars/Pandas DataFrames.
The real power of DuckDB's Arrow integration comes from its seamless interoperability with data frame libraries like Polars and Pandas. Because they all share the Arrow in-memory format, conversions are often zero-copy and extremely fast.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"### From DuckDB to Polars/Pandas")
return
@app.cell
def _(pl, users_arrow_table):
# Convert the Arrow table to a Polars DataFrame
users_polars_df = pl.from_arrow(users_arrow_table)
users_polars_df
return (users_polars_df,)
@app.cell
def _(users_arrow_table):
# Convert the Arrow table to a Pandas DataFrame
users_pandas_df = users_arrow_table.to_pandas()
users_pandas_df
return (users_pandas_df,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"### From Polars/Pandas to DuckDB")
return
@app.cell
def _(pl):
# Create a Polars DataFrame
polars_df = pl.DataFrame({
"product_id": [101, 102, 103],
"product_name": ["Laptop", "Mouse", "Keyboard"],
"price": [1200.00, 25.50, 75.00]
})
polars_df
return (polars_df,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"Now we can query this Polars DataFrame directly in DuckDB:")
return
@app.cell
def _(mo, polars_df):
# Query the Polars DataFrame directly in DuckDB
mo.sql(
f"""
SELECT product_name, price
FROM polars_df
WHERE price > 50
ORDER BY price DESC;
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"Similarly, we can query a Pandas DataFrame:")
return
@app.cell
def _(pd):
# Create a Pandas DataFrame
pandas_df = pd.DataFrame({
"order_id": [1001, 1002, 1003, 1004],
"product_id": [101, 102, 103, 101],
"quantity": [1, 2, 1, 3],
"order_date": pd.to_datetime(['2024-01-15', '2024-01-16', '2024-01-16', '2024-01-17'])
})
pandas_df
return (pandas_df,)
@app.cell
def _(mo, pandas_df):
# Query the Pandas DataFrame in DuckDB
mo.sql(
f"""
SELECT order_date, SUM(quantity) as total_quantity
FROM pandas_df
GROUP BY order_date
ORDER BY order_date;
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## 4. Advanced Example: Combining Multiple Data Sources
One of the most powerful features is the ability to join data from different sources (DuckDB tables, Arrow tables, Polars/Pandas DataFrames) in a single query:
"""
)
return
@app.cell
def _(mo, pandas_df, polars_df):
# Join the DuckDB users table with the Polars products DataFrame and Pandas orders DataFrame
result = mo.sql(
f"""
SELECT
u.name as customer_name,
p.product_name,
o.quantity,
p.price,
(o.quantity * p.price) as total_amount
FROM users u
CROSS JOIN pandas_df o
JOIN polars_df p ON o.product_id = p.product_id
WHERE u.id = 1 -- Just for Alice
ORDER BY o.order_date;
"""
)
result
return (result,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## 5. Performance Benefits
The Arrow format provides several performance benefits:
- **Zero-copy data sharing**: Data can be shared between DuckDB and other Arrow-compatible systems without copying.
- **Columnar format**: Efficient for analytical queries that typically access a subset of columns.
- **Type safety**: Arrow's rich type system ensures data types are preserved across systems.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"Let's create a larger dataset to demonstrate the performance:")
return
@app.cell
def _(pl):
import time
# Create a larger Polars DataFrame
large_polars_df = pl.DataFrame({
"id": range(1_000_000),
"value": pl.Series([i * 2.5 for i in range(1_000_000)]),
"category": pl.Series([f"cat_{i % 100}" for i in range(1_000_000)])
})
print(f"Created DataFrame with {len(large_polars_df):,} rows")
return large_polars_df, time
@app.cell
def _(large_polars_df, mo, time):
# Time a query on the large DataFrame
start_time = time.time()
result_large = mo.sql(
f"""
SELECT
category,
COUNT(*) as count,
AVG(value) as avg_value,
MIN(value) as min_value,
MAX(value) as max_value
FROM large_polars_df
GROUP BY category
ORDER BY count DESC
LIMIT 10;
"""
)
query_time = time.time() - start_time
print(f"Query completed in {query_time:.3f} seconds")
result_large
return query_time, result_large, start_time
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Summary
In this notebook, we've explored:
1. **Creating Arrow tables from DuckDB queries** using `.to_arrow()`
2. **Loading Arrow tables into DuckDB** and querying them directly
3. **Converting between DuckDB, Arrow, Polars, and Pandas** with zero-copy operations
4. **Combining data from multiple sources** in a single SQL query
5. **Performance benefits** of using Arrow's columnar format
The seamless integration between DuckDB and Arrow-compatible systems makes it easy to work with data across different tools while maintaining high performance.
"""
)
return
@app.cell
def _():
import marimo as mo
import pyarrow as pa
import polars as pl
import pandas as pd
return mo, pa, pd, pl
if __name__ == "__main__":
app.run() |