Spaces:
Runtime error
Runtime error
Commit
·
c555b3d
0
Parent(s):
Initial commit: Wav2Vec2 XLS-R 1B Portuguese ASR Gradio app
Browse files- README.md +148 -0
- app.py +109 -0
- requirements.txt +6 -0
README.md
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- pt
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- automatic-speech-recognition
|
7 |
+
- hf-asr-leaderboard
|
8 |
+
- mozilla-foundation/common_voice_8_0
|
9 |
+
- pt
|
10 |
+
- robust-speech-event
|
11 |
+
datasets:
|
12 |
+
- mozilla-foundation/common_voice_8_0
|
13 |
+
model-index:
|
14 |
+
- name: XLS-R Wav2Vec2 Portuguese by Jonatas Grosman
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Automatic Speech Recognition
|
18 |
+
type: automatic-speech-recognition
|
19 |
+
dataset:
|
20 |
+
name: Common Voice 8
|
21 |
+
type: mozilla-foundation/common_voice_8_0
|
22 |
+
args: pt
|
23 |
+
metrics:
|
24 |
+
- name: Test WER
|
25 |
+
type: wer
|
26 |
+
value: 8.7
|
27 |
+
- name: Test CER
|
28 |
+
type: cer
|
29 |
+
value: 2.55
|
30 |
+
- name: Test WER (+LM)
|
31 |
+
type: wer
|
32 |
+
value: 6.04
|
33 |
+
- name: Test CER (+LM)
|
34 |
+
type: cer
|
35 |
+
value: 1.98
|
36 |
+
- task:
|
37 |
+
name: Automatic Speech Recognition
|
38 |
+
type: automatic-speech-recognition
|
39 |
+
dataset:
|
40 |
+
name: Robust Speech Event - Dev Data
|
41 |
+
type: speech-recognition-community-v2/dev_data
|
42 |
+
args: pt
|
43 |
+
metrics:
|
44 |
+
- name: Dev WER
|
45 |
+
type: wer
|
46 |
+
value: 24.23
|
47 |
+
- name: Dev CER
|
48 |
+
type: cer
|
49 |
+
value: 11.3
|
50 |
+
- name: Dev WER (+LM)
|
51 |
+
type: wer
|
52 |
+
value: 19.41
|
53 |
+
- name: Dev CER (+LM)
|
54 |
+
type: cer
|
55 |
+
value: 10.19
|
56 |
+
- task:
|
57 |
+
name: Automatic Speech Recognition
|
58 |
+
type: automatic-speech-recognition
|
59 |
+
dataset:
|
60 |
+
name: Robust Speech Event - Test Data
|
61 |
+
type: speech-recognition-community-v2/eval_data
|
62 |
+
args: pt
|
63 |
+
metrics:
|
64 |
+
- name: Test WER
|
65 |
+
type: wer
|
66 |
+
value: 18.8
|
67 |
+
---
|
68 |
+
|
69 |
+
# Fine-tuned XLS-R 1B model for speech recognition in Portuguese
|
70 |
+
|
71 |
+
Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on Portuguese using the train and validation splits of [Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), [CORAA](https://github.com/nilc-nlp/CORAA), [Multilingual TEDx](http://www.openslr.org/100), and [Multilingual LibriSpeech](https://www.openslr.org/94/).
|
72 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
73 |
+
|
74 |
+
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool, and thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)
|
75 |
+
|
76 |
+
## Usage
|
77 |
+
|
78 |
+
Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:
|
79 |
+
|
80 |
+
```python
|
81 |
+
from huggingsound import SpeechRecognitionModel
|
82 |
+
|
83 |
+
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-portuguese")
|
84 |
+
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
|
85 |
+
|
86 |
+
transcriptions = model.transcribe(audio_paths)
|
87 |
+
```
|
88 |
+
|
89 |
+
Writing your own inference script:
|
90 |
+
|
91 |
+
```python
|
92 |
+
import torch
|
93 |
+
import librosa
|
94 |
+
from datasets import load_dataset
|
95 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
96 |
+
|
97 |
+
LANG_ID = "pt"
|
98 |
+
MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-portuguese"
|
99 |
+
SAMPLES = 10
|
100 |
+
|
101 |
+
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
|
102 |
+
|
103 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
104 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
105 |
+
|
106 |
+
# Preprocessing the datasets.
|
107 |
+
# We need to read the audio files as arrays
|
108 |
+
def speech_file_to_array_fn(batch):
|
109 |
+
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
|
110 |
+
batch["speech"] = speech_array
|
111 |
+
batch["sentence"] = batch["sentence"].upper()
|
112 |
+
return batch
|
113 |
+
|
114 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
115 |
+
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
116 |
+
|
117 |
+
with torch.no_grad():
|
118 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
119 |
+
|
120 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
121 |
+
predicted_sentences = processor.batch_decode(predicted_ids)
|
122 |
+
```
|
123 |
+
|
124 |
+
## Evaluation Commands
|
125 |
+
|
126 |
+
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
|
127 |
+
|
128 |
+
```bash
|
129 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-portuguese --dataset mozilla-foundation/common_voice_8_0 --config pt --split test
|
130 |
+
```
|
131 |
+
|
132 |
+
2. To evaluate on `speech-recognition-community-v2/dev_data`
|
133 |
+
|
134 |
+
```bash
|
135 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-portuguese --dataset speech-recognition-community-v2/dev_data --config pt --split validation --chunk_length_s 5.0 --stride_length_s 1.0
|
136 |
+
```
|
137 |
+
|
138 |
+
## Citation
|
139 |
+
If you want to cite this model you can use this:
|
140 |
+
|
141 |
+
```bibtex
|
142 |
+
@misc{grosman2021xlsr-1b-portuguese,
|
143 |
+
title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {P}ortuguese},
|
144 |
+
author={Grosman, Jonatas},
|
145 |
+
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-portuguese}},
|
146 |
+
year={2022}
|
147 |
+
}
|
148 |
+
```
|
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Wav2Vec2 XLS-R 1B Portuguese - Hugging Face Space
|
3 |
+
"""
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import torch
|
7 |
+
import librosa
|
8 |
+
import numpy as np
|
9 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
10 |
+
import warnings
|
11 |
+
|
12 |
+
warnings.filterwarnings("ignore")
|
13 |
+
|
14 |
+
# Initialize model and processor
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
model_name = "jonatasgrosman/wav2vec2-xls-r-1b-portuguese"
|
17 |
+
|
18 |
+
print(f"Loading model {model_name}...")
|
19 |
+
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
20 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
21 |
+
model.to(device)
|
22 |
+
model.eval()
|
23 |
+
print(f"Model loaded on device: {device}")
|
24 |
+
|
25 |
+
def transcribe_audio(audio_path):
|
26 |
+
"""Transcribe audio using Wav2Vec2"""
|
27 |
+
try:
|
28 |
+
# Load and preprocess audio
|
29 |
+
speech_array, sampling_rate = librosa.load(audio_path, sr=16000, mono=True)
|
30 |
+
|
31 |
+
# Process with model
|
32 |
+
inputs = processor(
|
33 |
+
speech_array,
|
34 |
+
sampling_rate=16000,
|
35 |
+
return_tensors="pt",
|
36 |
+
padding=True
|
37 |
+
)
|
38 |
+
|
39 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
40 |
+
|
41 |
+
with torch.no_grad():
|
42 |
+
logits = model(**inputs).logits
|
43 |
+
|
44 |
+
# Decode
|
45 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
46 |
+
transcription = processor.decode(predicted_ids[0])
|
47 |
+
|
48 |
+
# Calculate confidence
|
49 |
+
probs = torch.softmax(logits, dim=-1)
|
50 |
+
confidence = torch.max(probs).item()
|
51 |
+
|
52 |
+
return transcription, confidence
|
53 |
+
|
54 |
+
except Exception as e:
|
55 |
+
return f"Error: {str(e)}", 0.0
|
56 |
+
|
57 |
+
def process_audio(audio):
|
58 |
+
"""Process audio input from Gradio"""
|
59 |
+
if audio is None:
|
60 |
+
return "Please provide an audio file.", ""
|
61 |
+
|
62 |
+
transcription, confidence = transcribe_audio(audio)
|
63 |
+
|
64 |
+
# Format output
|
65 |
+
output = f"**Transcription:** {transcription}\n\n"
|
66 |
+
output += f"**Confidence:** {confidence:.2%}"
|
67 |
+
|
68 |
+
return output, transcription
|
69 |
+
|
70 |
+
# Create Gradio interface
|
71 |
+
with gr.Blocks(title="Wav2Vec2 XLS-R 1B Portuguese") as demo:
|
72 |
+
gr.Markdown("# 🎙️ Wav2Vec2 XLS-R 1B - Portuguese ASR")
|
73 |
+
gr.Markdown("Speech recognition for Portuguese using jonatasgrosman/wav2vec2-xls-r-1b-portuguese")
|
74 |
+
|
75 |
+
with gr.Row():
|
76 |
+
with gr.Column():
|
77 |
+
audio_input = gr.Audio(
|
78 |
+
sources=["upload", "microphone"],
|
79 |
+
type="filepath",
|
80 |
+
label="Audio Input"
|
81 |
+
)
|
82 |
+
|
83 |
+
submit_btn = gr.Button("Transcribe", variant="primary")
|
84 |
+
|
85 |
+
with gr.Column():
|
86 |
+
output_text = gr.Markdown(label="Results")
|
87 |
+
transcription_output = gr.Textbox(
|
88 |
+
label="Transcription Text",
|
89 |
+
lines=3,
|
90 |
+
interactive=False
|
91 |
+
)
|
92 |
+
|
93 |
+
submit_btn.click(
|
94 |
+
fn=process_audio,
|
95 |
+
inputs=[audio_input],
|
96 |
+
outputs=[output_text, transcription_output]
|
97 |
+
)
|
98 |
+
|
99 |
+
gr.Examples(
|
100 |
+
examples=[
|
101 |
+
["example_audio.wav"],
|
102 |
+
],
|
103 |
+
inputs=[audio_input],
|
104 |
+
cache_examples=False
|
105 |
+
)
|
106 |
+
|
107 |
+
# Launch the app - let Hugging Face Spaces handle the configuration
|
108 |
+
if __name__ == "__main__":
|
109 |
+
demo.launch() # Remove server_name and server_port for HF Spaces compatibility
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
torchaudio
|
5 |
+
librosa
|
6 |
+
numpy
|